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N Egypt, water deficits have dramatically increased in recent years due to over-exploitation of

this resource and other challenges. That restricts reduce or decrease its ability to accomplish
economic development goals. The present investigation was conducted at Sakha Agricultural
Research Station to assess the genetic behavior of 18 bread wheat genotypes during the two
growing seasons of 2015/2016 and 2016/2017 under normal and water stress conditions. The
experimental design was a randomized complete block design with three replicates. Results
showed large values of broad-sense heritability (h,?) which coupled with high values of genetic
advance as a percentage of the mean (GA %) at 10% selection intensity for grain filling rate
(93% and 19.91%) and chlorophyll b (82% and 22.22%) in the normal condition, respectively.
Regarding the water stress condition, the grain yield (89% and 18.74%) and 1000-grain weight
(87% and 17.62%) and proline (93% and 27.87%) recorded the highest values of h* and
GA%, respectively. Genotypes G18, G17, G4, and G13 were the best tolerant under water
stress condition and considered as promising genotype in breeding programs according to
a genotype by yield*trait (GYT) biplot graph. On the other hand, G12, G8, and G16 were
identified as sensitive genotypes. Undoubtedly, GY*T biplot graph is preferred because of it
easy to interpret and more informative to identify more accurate selection criteria using grain
yield and its attributes.

Keywords: Wheat, Water stress, Stress tolerance indices, Genetic parameters, GYT biplot

graph.

Introduction

Egyptian  government  commenced  the
Sustainable Development Strategy 2030 in 2016;
the strategy contains a set of economic, social,
and environmental goals to be accomplished by
the year 2030. However, accomplishing these
development goals may be restricted in the
coming years by the dilemma of water scarcity
where Egypt suffers from limited water resources
(Wahba et al., 2018).

Accordingly, deficiency of water in Egypt
is the main challenge for agricultural horizontal
expanding under current and future climate.
Agriculture sector consumes 81.6% of the
Egyptian annual water resources (CAPMAS,

2017). Significant changes in Egypt water
intensive crops production and trade have been
observed during the last 50 years. For example,
570% increase in wheat production during the
period from 1961 to 2015 was observed and
accompanied by 1456% increase in wheat net
imports (FAO, 2017).

In Egypt, wheat (Triticum aestivum L.) is
considered the first grain crop to feed for most
social populations and the straw yield supports
animals feeding. Wheat still on is the tops of list
of cereal crops in terms of area and production.
There is a huge gap between production and
consumption in Egypt (Wuletaw et al., 2017).
El-Gafy (2014) found that the water footprint
of wheat production and consumption in Egypt
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fluctuate according to the changes in the crop
production, foreign trade, per capita consumption,
population, and climate effects. Accordingly, due
to the serious current state of Egyptian water
crisis, a more comprehensive perspective on the
role of water in Egyptian trade and consumption
is needed and implementing three different
governmental water policies (reduce, reuse and
recycle).

Accordingly, development of cultivars with
high yield under limited water environments
is a major goal of plant breeding (Cattivelli et
al., 2008). Strenuous efforts have been made
for a long time to develop such cultivars which
could cope against biotic and abiotic stresses
and give more production. Selection for yield
under water deficit conditions is complicated by
low heritability and large genotype environment
interaction. The elite genotype for water stress
conditions must combine a reasonably high yield
potential with specific plant characters, which
could compensate yield against moisture stress
(Blum, 2005). Evaluation of yield performance of
genotypes under both favorable and unfavorable
conditions is vital for plant breeders to identify
stress tolerant genotypes (Pirayvatlou, 2001). It
is obvious that high-yielding genotypes under
adequate conditions may be not stress tolerant
(Mardeh et al., 2006); therefore, various studies
favorite the selection under stress and non-stress
environments (Rajaram & Van Ginkle, 2001).

Stress tolerance indices (STI) widely used as
simple mathematical equations that quantify and
compare the grain yields under stressed and non-
stressed conditions to differentiate the tolerant/
sensitive genotypes (Mitra, 2001). There are
various stress tolerance indices such as mean
productivity (MP) (Rosielle & Hamblin, 1981),
geometric mean productivity (GMP) and stress
tolerance index (STI) .

Knowledge on heritability and genetic advance
is a basic step to identify the characters amenable
to genetic improvement through selection. The
heritability values without considering genetic
advance would be impractically useful in breeding
program depending on visual selection. Plant
breeders have become increasingly able to use
directly yield components as selection criteria to
achieve results more quickly and efficiently than
selecting for yield performance itself.

Egypt. J. Agron. 41, No. 3 (2019)

A genotype by yield*trait (GY*T) biplot is a
novel approach was proposed by Yan & Frégeau-
Reid (2018) to tackle the problem of genotype
evaluation on multiple traits. It is based on the
following conceptualizations: 1) Yield is the
most important trait and all other target traits
are important only when combined with high
yield, 2) The superiority of a genotype should be
judged by its weight based on combining yield
with other target traits, rather than the individual
traits. In Egypt, on wheat crop, no references have
been found about the use of yield*trait (GY*T)
biplot graph in making selection criteria of grain
yield and its components. Accordingly, the main
goals of this investigation were to: (1) Evaluate
the response of early and grain yield characters
of 18 bread wheat genotypes under normal and
water stress conditions, (2) Identify the water
deficit tolerant wheat genotypes based on stress
tolerance indices (STI) and (3) Using new
approach of genotype by yield*trait (GYT) biplot,
as a selection criterion toevaluatel8 bread wheat
underwater stress conditions.

Materials and Methods

This study was conducted at the Experimental
Farm of Sakha Agricultural Research Station,
Kafr El-Sheikh, Egypt, during 2015/2016 and
2016/2017 seasons. Eighteen bread wheat
(Triticum aestivum L.) genotypes were used and
grown on mid- November in the two seasons. The
tested wheat genotypes contained 14 lines that were
selected as promising lines from the local breeding
program in addition to four cultivars used as
checks, i.e., Giza 171, Shandweel 1, Gemmeiza 11
and Sids 12. The name and pedigree of the studied
genotypes are listed in Table 1. In each season,
the entries were evaluated in two experiments
represented two different irrigation conditions.
The first was irrigated four times after planting
irrigation (normal irrigation) while the second
one was to give one surface-irrigation during
the tillring stage after planting irrigation by (25
days). The experimental design was randomized
complete block design with three replicates for
each irrigation condition. Before cultivation, soil
samples at 0-30 cm depth and from 30-60cm were
collected during the two of season’s study. Details
of soil properties of the research site seasons are
in Table 2. The meteorological data were recorded
for the two winter growing seasons from Sakha
meteorological station as shown in Table 3.
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TABLE 1. Name and pedigree of the studied wheat genotypes.

Genotype Pedigree
Line 1 ATTILA*2 / PBW65 /4/ CHEN / AEGILOPS SQUARROSA (TAUS) // BCN /3/ 2*KAUZ
Line 2 VEE / KOEL // 2* SKAUZ /3/ KAUZ // BOW / NKT
Line 3 PFAU / MILAN /5/ WEAVER /4/ NAC / TH.AC // 3* PVN /3/ MIRLO / BUC
Giza 171 SAKHA 93 / GEMMEIZA 9
Line 5 OASIS / SKAUZ // 4* BCN /6/ CNDO / R143 // ENTE / MEXI 2 /3/ AEGILOPS .SQUARROSA
¢ (TAUS) /4/ WEVER /5/ 2*TAUZ
Line 6 SERI*3 // RL6010 / 4*YR /3/ PASTOR /4/ BAV92 /5/ KAUZ // BOW / NKT
Gemmiza 11 BOW?”S”/KVZ”S”//7C/SER182/3 /GIZA168/SAKHA 61
Line 8 VEE/PJN//2*TUI/3/GALVEZ/WEAVER /7/ BUC // 7C / ALD /5/ MAYA74 / ON // 1160.147 /3/
BB/ GLL /4/CHAH”S” /6/ MAYA / VUL // CMH74A.630 /4*SX
. BUC//7C/ALD/5/MAYA74/ON//1160.147/3/BB/GLL/4/CHAT”S”/6/MAYA/VUL//CMH74
Sids 12
A.630/4*SX
Line 10 DVERD 2/ AE - SQUARROSA (214)// 2* BCN /5/ WEAVER /4/ NAC / TH.AC // 3* PVN /3/
e MIRLO / BUC
Line 11 CHIBIA//PRLII/CM65531/3/ SKAUZ *2 / SRMA
Line 12 VEE/PIN//2*TUI/3/GALVEZ/WEAVER /4/ CHIBIA//PRLII/CM65531

Shandweel 1
Line 14

Line 15

Line 16

Line 17

Line 18

SITE/MO/4/NAC/TH.AC//3*PVN/3/MIRLO/BUC
VOROBEY
CHEN / AEGILOPS SQUARROSA (TAUS) // BCN /3/ 2*KAUZ /4/ HAAMA-11

OASIS / SKAUZ // 4* BCN /6/ GIZA 158 /5/ CFN /CNO “S” // RON /3/ BB / NOR 67 /4/ TL /3/
FN/TH //2* NAR 59

WHEAR/VIVITSI//WHEAR
PASTOR/SITE/MO/3/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/4/WBLL1

According to the data of the Egyptian Wheat Research Department, ARC.

TABLE 2. Mechanical and chemical soil analyses during two growing seasons.

Ani L ti L
. Sample Soil nions my/ Cations mg/
Location depth  structure EC
P CO- HCO- CL SO4 Ca" Mg" Na' K
2015/2016
- I 6 2. ; 2. 10 433 10 1 124 02
Nommgl 0730 Clayey 86 233 5 0 433 106 6 0.29
il
sot 30-60 Clayey 87 2.1 ; 225 13 487 66 49 8 033
2016/2017
- I 1 201 1 911 s 91 103 031
Nommgl | 0730 Clayey 8 0 - 3 81 9 56 391 103 03
il
sot 30-60  Clayey 7.9 1.5 - 25 48 716 323 233 842 029
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TABLE 3. Monthly mean of air temperature (AT °C), relative humidity (RH %) and rainfall (mm/month) in
winter seasons 2015/2016 and 2016/2016 at Sakha location.

Month AT °C 2015/16 ATC 2016/17 RH % Rainfall (mm)

o Max. Min. Max. Min. 2015/16 2016/17 2015/16 2016/17
December 243 13.8 24.8 14.4 74.15 75.62 20.6 12.15
January 223 9.72 20.4 8.33 76.05 78.27 5.7 25
February 18.7 6.46 18.4 6.3 74.6 74.1 42.55 40.7
March 19 7.65 235 6.7 74.75 70 30.8 -
April 22.7 11.7 23.7 11.6 70.59 69.76 6.25 13.2
May 27.6 13.7 30 14.2 63.4 61.72 16.9 -
Means 30.2 18.8 31.2 19 61.7 58.33 - -

Max= Maximum temperature, Min= Minimum temperature.

A wide border (25m) surrounded each
experiment to minimize the underground water
permeability. The wheat grains were planted in six
rows/ plots (3.5m long and 20cm apart). Thus, the
plot area was 4.2m? where the harvest area was
2.8m? included the four guarded rows. All other
cultural practices were applied as recommended
for wheat cultivation. The studied characteristics
were: Days to heading (DH) and days to maturity
(DM), grain filling period (GFP) in days and equal
to the number of days from heading to maturity,
grain filling rate (GFR) in g/m? per days' and
equal to GY divided by GFP, flag leaf area (FLA),
chlorophyll a (Cha), chlorophyll b (Chb), proline
content (P), plant height (PH, cm), number of
spikes/m? (S/m?), number of kernels/ spike (K/S),
1000-kernel weight (1000 KW in g), straw yield
(SY in ton fed') and grain yield (GY, ardab fed-
1) (one feddan equal 0.42 hectares, harvest index
HI).

Statistical analysis

Stress tolerance indices

The data were subjected to individual and
combined analysis of variance of randomized
complete block design over the two cultivated
sites (normal and shortage irrigation) for each
season (Steel et al., 1997). As a routine statistical
step, Levene test was run prior to the combined
analysis to confirm the homogeneity of individual
error terms (Levene, 1960). Least significant
difference (LSD) test was used to detect the
significant differences among the proper items at
probability level of 0.05. For each genotype, six
stress tolerance indices were calculated based on
average grain yield under normal irrigation (Yn)
and water stress conditions (Ys) over the two
seasons. The names, equations and references of
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the stress tolerance indices are shown in Table
4. The genotypes which possess high values
of mean productivity (MP), harmonic mean
(HM), geometric mean productivity (GMP),
stress tolerance index (STI), yield index (YI),
and modified stress tolerance index (MSTI)
are considered to be more tolerant for reduced
irrigation.

Genetic parameters

Based on the combined analysis of each
irrigation condition(normal irrigation N and
reduce irrigation S) over the two seasons, the
genotypic and phenotypic variances and their
corresponding coefficient of variations (GCV and
PCV) were estimated using the proper mean square
expectations according to the method suggested
by Johnson et al. (1955). Broad sense heritability
(h,?) and genetic advance (GA %) in terms of
percentage of mean (with 10% selection intensity)
were estimated according to Allard (1999).

The genotype by yield*trait (GYT)

The values for the yield-trait combinations
were obtained by multiplying the yield value with
the trait value for each genotype (e.g., Y*1000
KW, Y* P, Y* PH, Y*FLA, Y* Cha, Y* Chb and
Y* K/S). These were measures of how grain yield
and traits content were combined in a genotype.
For grain filling rate (GFR), days to maturity
(DM), days to heading (DH) and straw yield
(SY) which were so measured that a larger value
means less desirable, the values by the yield-trait
combinations were obtained by dividing the yield
value for the trait value for each genotype (e.g., Y/
GFR). The units for the yield-trait combinations
are not important as it is the standardized data that
are used in genotype evaluation.
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TABLE 4. The name, equation and reference of some stress tolerance indices.

Index name

Formula Reference

No. % Reduction

(Y,-Y)*100/Y,

The high values of these indices indicated to stress tolerance

1 Mean productivity (MP)

2 Harmonic mean (HM)

3 Geometric mean productivity (GMP)

4 Stress tolerance index (STI)

5 Yield index (YT)

6 Modified stress tolerance index (MSTI)

(Y +Y)2 (Rosielle & Hamblin, 1981)
@*Y *Y)(Y *Y) (Jafari et al., 2009)
(Y, *Y ) (Fernandez, 1992)
(Y xY) /(? 5 (Fernandez, 1992)
v /? (Gavuzzi et al., 1997)
(YD)**STI (Farshadfar & Sutka, 2002)

-Y, and Y indicate to average grain yield of each genotype under normal and stress conditions.

-Y ,and Y . indicate to average grain yield overall genotypes under normal and stress conditions

To rank the tested wheat genotypes for water
deficit tolerance, Superiority Index (weight of
selection criteria) was computed for each genotype
as the average over the standardized data of yield-
trait combination values.

Data standardization

Data were standardized so that the mean for
each trait or yield-trait combination becomes 0 and
the variance becomes unit (e.g., see Table 8). The
standardization was performed as:

Pij= Tij- Tj/ Sj

where Pij is the standardized value of genotype i for
trait or yield-trait combination j in the standardized
table, Tij is the original value of genotype i for trait
or yield-trait combination j in the GYT data, Tj is
the mean across genotypes for trait or yield-trait
combination j and Sj is the standard deviation for
trait or yield-trait combination j.

Construction of a GYT biplot

The GYT biplot was based on the first two
principal components (PC) resulting from singular
value decomposition (SVD) of the standardized
data. SVD decomposes the GYT table into
genotype Eigen values, yield-trait combination
Eigen values, and singular values:

P=(dh ) (0,1 /) + (dA52) (o d) e

where (, and (, are the eigen values for PC1 and

PC2, respectively, for genotype i; T, and T, are the
eigen values for PC1 and PC2, respectively for
yield-trait combination j and g is the residual from
fitting the PC1 and PC2 for genotype i on trait j;
A, and A, are the singular values for PC1 and PC2,
respectively. o is the singular value partitioning
factor. When a= 1 (i.e., SVP= 1 in terms of
GGE biplot), the biplot is said to be genotype-
focused, and is suitable for comparing genotypes.
When o= 0 (i.e., SVP= 2), the biplot is said to be
yield-trait combination -focused, and is suitable
for visualizing correlations among yield-trait
combination. Genotypes by yield-trait combination
relations are not affected by the choice of a. The
scalar d is chosen such that the length of the
longest vector among genotypes is equal to that
among yield-trait combination, which is important
for generating a functional biplot 3. The GYT
biplot was constructed by plotting (d,,a(;,) against
(dA2ali2) for genotypes and plotting At ™ (tlj/du) J,
against M““(tlj—a/dZI) J, for yield-trait combination
in the same plot (Yan & Frégeau-Reid, 2018).

Results and Discussion

The results of Levene test proved homogeneity
of separate error variances for all studied traits that
permits to apply combined analysis.

Mean performance

Highly significant differences were found
among the 18 wheat genotypes for fifteen
studied traits, during the two growing seasons of
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2015/2016 and 2016/2017 under both normal
and water stress conditions as shown in Table 5.

Results in Table 5 show that means of all
genotypes decreased significantly under the stress
conditions for all characters in the two seasons,
except chlorophyll b, proline, and harvest index
in the two seasons and 1000-kernel weight in
the first season only. The highest values were
showed by genotypes No. 17, 14 for plant height
under both conditions in the two seasons, while
the shortest plants were observed by Line No. 10
under adequate and stress conditions.

Under the full and reduced irrigations in the
two seasons, Lines No. 1 and 5 were the latest in
heading and maturely, respectively while Lines
No.10 and 15 were the earliest ones among the
studied genotypes.

The longest grain filling period (GFP) was
recorded by genotypes No. 9, 10 and16 while
Lines No. 3, 5 and 18 had the shortest GFP under
the two conditions in the 1% and 2™ seasons.

The highest GFR value was observed by
genotype No. 18 under the two irrigation
regimes. However, Line No. 3 in the first season
under normal condition; and genotype 17
recorded highest GFR under reduces irrigation
condition in first season. Line 16 showed the
slowest GFR under the two conditions in first
season. The highest values of No. of spikes/m?
(S/m?) were found in genotype 5, 18, under the
two conditions, while the lowest values were
obtained in Line 7 and genotype 12 under the two
conditions. Genotype 9, 13, showed the highest
K/S under the two conditions, while Line 10 vice
versa under all conditions in first season, Line 12
in the second season under the two conditions.
The highest 1000- KW resulted from genotype
15, Line 17 in under the two conditions at first
season, while the lowest values belonged to
Line 1 and Line 8 under the two conditions. The
highest GY was obtained from genotype 18 and
genotype 3, under the two conditions, while, the
lowest GY belonged to genotype 12, and Line 16
under the two conditions.

Based on the results of each trait the response
of genotypes at each condition was different.
The studied traits of all studied genotypes have
been observed to be affected by reduce irrigation
stress to a considerable extent. These genotypes
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produced the best values of the studied traits
during the normal conditions but some genotypes
could perform well under reduce irrigation stress
conditions.

Inaddition, the values ofthe studied characters
hold the same trend for the overall means
under the two conditions in the two seasons.
Moreover, the ranges between the values of all
characters decreased under the reduce irrigation
condition in the two seasons in most cases
except chlorophyll b, proline. Reduce irrigation
affects most physiological processes in wheat
lead to reduce plant growth by affecting various
physiological and biochemical processes, such
as photosynthesis, respiration, translocation, ion
uptake, carbohydrates, and nutrient metabolism
and growth promoters. The highest proline
content was observed in the genotypes 11, 18
binge 1.9 and 1.8, respectively in the first season
and genotypes 7,5,3,2 binge (2.5, 2.2, 2.1, 2.1),
respectively at second season. Bayoumi et al.
(2008) reported a similar positive relationship
between grain yield and proline accumulation
under stress conditions in wheat. This suggests
that the high proline content in the genotypes
is probably a positive adaptive mechanism for
overcoming the stress conditions. It is well
documented that accumulated proline plays
a role as a proper solute in plants, regulating
and reducing water loss from the cell under
water deficit conditions. Also, that high proline
accumulation in the plants could provide energy
for growth and survival and thereby helping the
plant to tolerate stress. Using mean performance
as an indicator of adaptation, the genotypes
18, 6, 17, and 4 appear to be broadly adapted
and relatively drought tolerant under stress
conditions because the best values for other
studied traits were recorded by these genotypes.
In general, these results are in harmony with
those reported by Amer (2011), Hassanein et al.
(2012), Saad et al. (2014), Deef et al. (2016), El-
Hashash & Agwa (2018), Fouad (2018) and Juan
etal. (2019).

Genetic parameters

Table 6 presented the estimates of phenotypic
(PCV) and genotypic (GCV) coefficients of
variation, broad sense heritability (h,?) and
expected genetic advance as a percent of the
mean (EGA %) for the studied traits under each
of well and stress conditions.
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TABLE 6. Genetic parameters of grain yield and its attributes computed from 18 wheat genotypes evaluated under
normal and stress conditions across the two seasons.

Genetic parameters

Traits Grand mean GCV (%) PCV (%) hb* (%) EGA (10 %)
Normal  Stress Normal Stress Normal Stress Normal Stress Normal Stress
DH 96.83 94.62 4.05 4.67 4.25 4.82 0.91 0.94 6.80 7.94
DM 147.49 143.87 2.22 2.31 2.33 2.48 0.91 0.87 3.71 3.80
GFP 50.66 49.25 4.83 5.69 5.66 6.55 0.73 0.75 7.25 8.68
GFR 84.19 75.82 11.75 14.02 12.20 14.35 0.93 0.95 19.91 24.11
FLA 53.52 39.98 14.28 15.46 16.34 16.54 0.76 0.87 21.96 25.43
Chl. a 3.20 2.81 3.63 3.63 5.40 4.21 0.45 0.74 4.29 5.49
Chl. b 1.79 1.81 13.98 9.14 15.49 10.49 0.82 0.76 22.22 14.00
Proline 1.37 1.67 7.48 16.39 9.12 16.96 0.67 0.93 10.80 27.87
PH 116.85 108.56 6.50 7.06 6.79 7.47 0.92 0.89 10.95 11.75
NS/m? 363.44  320.09 10.70 10.18 14.50 16.10 0.54 0.40 13.90 11.33
HI 39.50 40.72 7.19 6.97 7.76 7.32 0.86 0.91 11.72 11.68
é}(l;?/o 42.34 43.20 8.79 10.75 10.12 11.54 0.75 0.87 13.43 17.62
NG/S 60.64 55.27 10.44 9.50 11.67 10.92 0.80 0.76 16.45 14.55
SY 6.52 9.11 9.41 7.30 10.11 8.07 0.87 0.82 15.42 11.63
GY 28.34 24.78 9.56 11.26 10.24 11.90 0.87 0.89 15.71 18.74

The phenotypic (PCV) and genotypic (GCV)
coefficient of variation (Table 6) were closest to
each other in some studied characters namely
DH, DM, GFP, GFR, P, PH and HI indicating
that the variations among tested genotypes were
mostly returned to genetic makeup rather than
environmental effect of the two conditions. On
the other hand, the values of (PCV) were slightly
higher than their corresponding values of (GCV)
for FLA, Cha, Chb, NS/m?, NG/S,1000GW, SY
and GY indicating the role of environmental
effects in the expression of the characters.

The highest estimates of phenotypic (PCV)
and genotypic (GCV) coefficients of variation
were obtained by FLA (14.28 and 16.34) and
(15.46 and 16.54), under normal and reduce
irrigation, respectively. Under stress conditions,
the characteristics of P, NS/m?, 1000 GW, and GY
recorded also high estimates phenotypic (PCV)
and genotypic (GCV) coefficients of variation
being 16.39 and 16.96, 10.18 and 16.10, 10.75
and 11.54 and 11.26 and 11.90, respectively,
reflecting a wide pattern of genotypic variation
among tested genotypes considering the previous
characters. In accordance, the selection among the
tested genotypes would be effective to improve
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these traits. Meanwhile, moderate values of (PCV
and GCV) were only observed under reduce
irrigation with PH (7.06 and 7.47) and GFP (5.69
and 6.55), in the two seasons, respectively. On
the other hand, DH, DM, and Cha recorded low
estimates of PCV and GCV in the two levels.
Similar results were reported by Abd EI-Mohsen
et al. (2015).

It is important to emphasize that, without
considering genetic advance (GA), the heritability
values (h?) would not be practically valuable in the
selection depending on phenotypic appearance.
Johnson et al. (1955) confirmed that heritability
estimates in conjunction with genetic advance
would give more reliable index of selection value.

In the present study, the broad sense heritability
values (h,?) ranged from 45 for Cha to 93 for GFR
under normal condition while it ranged from 40
for NS/m? to 95 for GFR under reduce irrigation
condition. The values of genetic advance (GA),
based on 10 % selection intensity, ranged from
3.71 for DM to 22.22 for Chb under normal
irrigation whereas it ranged from 3.80 for DM to
27.87 for P under reduce irrigation condition.
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Maximum values of broad sense heritability
(h,?) coupled with their corresponding genetic
advance (GA) values at 10 % selection intensity
were obtained by GFR (93 and 19.91) and chb (82
and 22.22) in the adequate hydration condition,
respectively. Regarding the shortage irrigation
condition, the GFR (95 and 24.11), FLA (87 and
25.43) and P (93 and 27.87) recorded the highest
values of h > and GA, respectively.

This result indicated that the selection in early
generations would be effective to develop these
traits. However, PH, HI, 1000 GW, NGS!, SY and
GY recorded high heritability values accompanied
with moderate genetic advance value under
normal and shortage irrigation conditions. DH,
DM and GFP exhibited high values of broad sense
heritability (h,?) but coupled with low genetic
advance values under the irrigation regimes.
From the above results, it is obvious the limited
scope for improvement of these traits among the
tested genotypes. The current conclusions are
supported by Mohammadi (2016), Arya et al.
(2017), Igbal et al. (2017), Abdel Aziz & Abd El-
Rasool (2018), El-Hashash & Agwa (2018) and
Fouad (2018), who confirmed that plant breeders
can safely make their selection when they take in
consideration high values of h >and GA %.

Stress tolerance indices

Results in Table 7 presented the mean grain
yields of genotypes under adequate hydration (Y )
and stress condition (Y ) as well as the estimates
of six stress tolerance indices and their respective
ranks. The grain yield varied from 22.40 and
18.90 for line No.12 to 33.65 and 29.50ardab/
fed corresponding to G18, under normal and
stress conditions, respectively with an average
of 27.97ardab/fed. There were clear differences
among tested genotypes in respect to grain yield/
fed under normal and shortage irrigation which
reflects magnitude of genetic diversity among
them that enabled us to select drought tolerant
genotypes.

Grain yields of tested genotypes under both
normal and reduce irrigations were formulated
to calculate different sensitivity and tolerance
indices (Table 7). Genotypes with high values
of mean productivity (MP), harmonic mean
(HM), geometric mean productivity (GMP),
stress tolerance index (STI), yield index (Y]),
and modified stress tolerance index (MSTI)
could be selected as tolerant genotypes to reduce

irrigation stress.

Based on the highest values of the used
indices as indicator of stress tolerant, genotypes
No. 3,4, 5, 6, 13, 14, 17 and 18 were the most
tolerant genotypes under reduce irrigation stress.
Accordingly, these genotypes were preferred to
cultivate under the reduce irrigation condition, so
they considered a promising genotypes in wheat
breeding programs. On the other hand, the rest
items were identified as susceptible genotypes,
because of their low values of stress tolerance
indices.

The similarity among the indices in ranking
genotypes for stress tolerance may be attributed to
that these indices are functions of each other’s as
above shown in Table 4. Therefore, these indices
are equivalent for ranking genotypes for stress
tolerance and they could be interchangeably used
as a substitute for each other. A similar trend of
results was found by Saad et al. (2014), Ali & El-
Sadek (2016), Mohammadi (2016), Arya et al.
(2017), Abdel Aziz & Abd El-Rasool (2018), El-
Hashash & Agwa (2018), Fouad (2018) and Patel
(2019).

Genotype by yield*trait (GYT) biplot

Yan and Frégeau-Reid 2018 reported that the
genotype by yield*trait (GY*T) biplot graphic a
comprehensive and effective tool used to ranks
the genotypes based on their levels in combining
yield with various target traits and at the same time
shows the force and weaknesses of the genotypes.

The newness of this approach is the pattern
alteration that the superiority of a genotype should
not only be measured by its levels in individual
traits but more importantly by its levels in
combining yield with other target traits.

Polygon graph "which-won-where" is a
useful tool for visualizing the trait profiles of the
genotypes. The irregular polygon was formed
by connecting the genotypes with the longest
vectors in all directions. For each polygon side,
a line was drawn to start from the biplot origin
to be perpendicular to the polygon side dividing
the yield-trait combinations into some sectors;
corresponding to each sector there was a polygon
vertex (elite genotype). The geometry of the biplot
determines that the genotype placed on a vertex has
the largest values for the yield-trait combinations
placed within the identical sector. Also, the graph
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identifies genotypes that are particularly good in
certain part or side and therefore can be nominee
for selection and hybridization in wheat breeding
program (Yan & Frégeau-Reid, 2018). Although,
yield is the only trait that can determine the
usefulness of a genotype by itself while other
traits (agronomic traits, quality traits, or stress
resistances) are valuable to producers only when
they are combined with sufficiently good yield
levels. For example, wheat genotype with high
proline level would be a highly valuable breeding
parent to resistances drought stress. However, if
its yield is lower than the best cultivars, then it
will not be an elite cultivar. Similarly, a genotype
had an extremely good a biotic resistance but
gave very low yield would have no place in
growers: fields.

Results of GY*T biplot analysis of grain
yield-trait combinations of 18 bread wheat
genotypes evaluated under normal and reduce
(stress) irrigations across the two growing
seasons are summarized and presented in Fig. 1,
2 and Table 8.

Polygon  "which-won-where"  (Fig. 1)
presents the relationship among the aimed wheat
genotypes using the grain yield-trait combinations
under normal irrigation condition across the two
growing seasons. The GY*T biplot of the mean
performance of grain yield and its components
data explained 82.57% of the total variation of
the standardized data. The first and two principal
components (PC1 and PC2) explained 72.73%
and 9.83%, respectively. Yan & Kang (2003)
mentioned that the first two PC’s should reflect
more than 60% of the total variation in order to
achieve the goodness of fit for biplot model. It
is obvious that genotype No.18 had the largest
values for grain yield combining with number of
spikes/m?, chlorophyll a, chlorophyll b, proline,
plant height, 1000 grain weight and number of
kernels per spike meaning that it is a superior
genotype for high grain yield and its attributes.
With respect to the superiority index (Table 8),
genotype No. 18 ranked as the first one among the
tested genotypes which confirmed the previous
results obtained by GY*T biplot graph. As well
as, genotypes No. 3, 6, 13 and 15 located in the
same sector and so, it reflected similar behavior
toward the combining grain yield with the same
aforementioned traits. According to superiority
index, the abovementioned genotypes were
ranked as 5, 7, 4 and 6, respectively. It is noted
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that the points of these genotypes and combining
grain yield-traits placed into one sector and the
angles among them were acute reflecting the
linear relationships among them.

Genotypes No.4 and 17 were among the best
genotypes in combining grain yield with flag leaf
area. Using superiority index (Table 8), the two
genotypes No. 4 and 17 occupied the ranks No. 3
and 2, respectively. Also it is apparent from Fig.
1 that genotypes 4 and 17 had a contrasting trait
profile to that of genotypes No. 18, 3, 6, 15 and
13, although all cultivars had good levels of yield.
On the other hand, the genotypes 12, 5, 7, 16,
10, 1, 2, 8, 9 and 14 recorded the lowest values
of combining grain yield-traits because obtuse
angles were found between these genotypes and
all characters, indicating their poor performance
toward these combining grain yield-traits.

Finally, the four lines 12, 7, 8 and 5 were
located far from most studied combining grain
yield-traits (obtuse angles) indicating their poor
performance toward these traits.

On the other hand, polygon "which-won-
where" (Fig. 2) presents the relationship among the
aimed wheat genotypes using the grain yield-trait
combinations under reduce irrigation condition
across the two growing seasons.GY*T biplot
graph explained 84.39% of the total variation
of the standardized data. The first and second
principal components (PC1 and PC2) explained
77.79% and 6.60%, respectively. Genotypes were
distributed into five sectors (Figure 2), the highest
grain yield-trait combinationsbelonged to G18,
which was the best one in agronomic performance
and content of chlorophyll a, chlorophyll b,
proline besides G17 and G6. Accordingly, the high
proline content in these genotypes is probably
a positive adaptive mechanism for overcoming
the stress conditions. It is well documented that
accumulated proline plays a role as a compatible
solute in plants, regulating and reducing water
loss from the cell under water deficit conditions
(Verbruggen & Hermans, 2008; Mafakheri et
al., 2010; Moayedi et al., 2011). According to
superiority index (Table 8), the abovementioned
genotypes were ranked as 1, 3 and 4, respectively.
It is worthy that the grain yield-trait combinations
value of G18, G6 and G17 were high under both
normal and reduce irrigations conditions. This
shows that these genotypes well adapted to both
environments. According to Bijanzadeh & Emam
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(2010) and Mafakheri et al. (2010) chlorophyll is an indicator of the photosynthetic activity and
is one of the major chloroplast components for its stability for the conjugation of assimilate
photosynthesis and flag leaf chlorophyll content biosynthesis.

TABLE 7. Estimates of tolerance Indices and their respective ranks of 18 bread wheat genotypes based on grain
yield under normal and stress conditions across the two seasons of 2015/2016 and2016/2017.

Grain yield (Y) Tolerance indices

Genotype

Y normal Y stress MP HM GMP STI YI MSTI

Calculated values
Line 1 27.00 22.55 24.78 24.58 24.67 0.76 0.91 0.63
Line 2 27.60 22.40 25.00 24.73 24.86 0.77 0.90 0.63
Line 3 30.75 26.80 28.78 28.64 28.71 1.03 1.08 1.20
Giza 171 30.40 27.60 29.00 28.93 28.97 1.04 1.11 1.30
Line 5 29.35 26.25 27.80 27.71 27.76 0.96 1.06 1.08
Line 6 29.55 27.25 28.40 28.35 28.38 1.00 1.10 1.21
Gemmiza 11 27.60 23.35 25.48 25.30 25.39 0.80 0.94 0.71
Line 8 24.75 21.25 23.00 22.87 22.93 0.65 0.86 0.48
Sids 12 27.10 23.35 25.23 25.09 25.16 0.79 0.94 0.70
Line 10 27.80 24.15 25.98 25.85 2591 0.84 0.97 0.79
Line 11 28.00 25.15 26.58 26.50 26.54 0.88 1.02 0.90
Line 12 22.40 18.90 20.65 20.50 20.58 0.53 0.76 0.31
Shandweel 1 31.20 26.75 28.98 28.80 28.89 1.04 1.08 1.21
Line 14 28.05 25.80 26.93 26.88 26.90 0.90 1.04 0.98
Line 15 28.45 24.40 26.43 26.27 26.35 0.86 0.98 0.84
Line 16 25.55 22.30 23.93 23.81 23.87 0.71 0.90 0.57
Line 17 30.95 28.25 29.60 29.54 29.57 1.09 1.14 1.41
Line 18 33.65 29.50 31.58 31.44 31.51 1.24 1.19 1.75
Corresponding ranks

Line 1 15 14 15 15 15 15 14 15
Line 2 12 15 14 14 14 14 15 14
Line 3 4 5 5 5 5 5 5 6
Giza 171 5 3 3 3 3 3 3
Line 5 7 7 7 7 7
Line 6 6 4 6 6 6 6 4 4
Gemmiza 11 12 12 12 12 12 12 12 12
Line 8 17 17 17 17 17 17 17 17
Sids 12 14 12 13 13 13 13 12 13
Line 10 11 11 11 11 11 11 11 11
Line 11 10 9 9 9 9 9 9 9
Line 12 18 18 18 18 18 18 18 18
Shandweel 1 2 6 4 4 4 4 6 5
Line 14 9 8 8 8 8 8 8 8
Line 15 8 10 10 10 10 10 10 10
Line 16 16 16 16 16 16 16 16 16
Line 17 3 2 2 2 2 2 2 2
Line 18 1
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TABLE 8. Standardized genotype by yield*trait (GYT) data and superiority index for the genotypes under normal
and stress condition over the two seasons for all studied traits.

2
g DHY DMY ChaY ChbY FLAY KSY KWY PHY PY Sm?Y S“‘i’l‘iat’;ity Rank
<]

Normal irrigation
1 2120 -0.82 061 065 066 -020 -135 -048 060 031 -0.51 15
2 029 -021 -0.18 085 084 061 -042 -038 007 -0.37 -0.41 14
3 130 131 077 050 -0.10 100 000 025 154 058 0.72 5
4 064 051 155 050 155 161 139 104 087 -030 0.94 3
5 030 017 026 -001 -050 -0.52 -006 024 0.3 173 0.11 8
6 032 033 049 045 -097 024 015 0.8 016 0.12 0.15 7
7 022 -025 -048 0.3 204 053 0.9 -0.12 023 -1.26 -0.03 9
8 137 -148  -1.13 096 036 -122 -139 -131 -1.82 -1.44 -1.25 17
9 2006 -041 003 004 025 089 061 -0.86 -049 -0.92 0.23 11
10 052 001 002 -039 -0.66 -099 027 -091 -020 -0.32 -0.27 13
1 000 -0.05 -043 001 -041 031 -048 -075 -034 075 -0.14 10
12 217 213 -191 -1.89 -1.88 204 -1.56 -1.64 -2.18 -1.98 -1.94 18
13 110 086 125 012 048 158 0.5 097 098 047 0.77 4
14 075 031 -094 -1.00 071 029 -029 074 -0.60 -0.26 -0.24 12
15 078 064 011 -036 052 -002 102 -006 -0.16 0.70 0.30 6
16 -0.68 -1.04 -1.12 091 -085 -1.14 -054 -0.63 -0.86 -0.30 -0.63 16
17 063 080 066 104 140 051 138 201 043  0.90 0.98 2
18 174 206 195 273 027 084 215 170 165 1.60 1.67

Stress conditions
1 15 -1 -1 07 -14 09 -1 07 -02 -027 -0.88 16
2 1 -8 08 -12 04 12 -1 08 -0 -0.94 -0.82 14
3 1 11 07 02 018 084 008 01 15 1.042 0.64 5
4 09 08 121 074 184 155 173 1 0.9  -0.06 1.06 2
5 0 04 03 -0 03 033 017 04 1 1579 0.37 7
6 07 07 051 L1505 08 035 04 09 0908 0.70 4
7 05 05 06 067 039 08 006 02 11 -8 -0.16 11
8 14 14 15 11 06 -13  -15  -14 07 -1.18 121 17
9 02 06 02 01 104 048 06 07 -1  -LI 0.32 13
10 0.6 0 0 006 06 06 053 -09 -08 -0.03 -0.16 12
1 03 02 0 01 059 043 02 -05 01 086 0.17 10
12 21 2 19 18 24 2 16 -6 -19 208 -1.95 18
13 06 05 108 104 08 117 0.1 06 -0. 0486 0.45 6
14 01 03 013 098 048 053 018 12 02 -0.05 0.35
15 07 03 009 058 072 03 0.1 -0 -0.7 0387 0.17
16 06 08 09 -19 07 09 03 05 -1.6 -028 -0.85 15
17 09 1.1 129 061 068 094 138 2 06 0571 1.01 3
18 15 18 169 138 079 077 204 1.6 12 1338 1.42 1

The traits codes are: DHY: Days to heading, DMY: Days to maturity, ChaY: Chlorophyll a, ChbY: Chlorophyll b, FLAY: Flag leaf area,
KSY: Kernels per spike, KWY: 1000-kernel weight, PHY: Plant height, PY: Proline content and Sm?Y: Number per spikes/m?.
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Fig. 1. The "which-won-where' view of the genotype by yield*trait (GYT) biplot to highlight genotypes with
outstanding profiles [The traits codes are DHY: Days to heading, DMY: Days to maturity, FLAY: Flag leaf area,
ChbY: Chlorophyll b, ChaY: Chlorophyll a, PY: Proline content, PHY: Plant height, Sm™Y: Number of spikes/m?, KWY:

1000-kernel weight and GY: Grain yield].

Scatter plot (Total - 84.39%)
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Fig. 2. The "which-won-where' view of the genotype by yield*trait (GYT) biplot to highlight genotypes with
outstanding profiles. [The traits codes are DHY: Days to heading, DMY: Days to maturity, FLAY: Flag leaf area,
ChbY: Chlorophyll b, ChaY: Chlorophyll a, PY: Proline content, PHY: Plant height, Sm?Y: Number of spikes/m?, KWY:

1000-kernel weight and GY: Grain yield].
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However, the vertex genotype No. 4 (G4) had
good behaviour for grain yield-trait combination
with flag leaf area besides genotypes No. 15 and
14.Concerning superiority index (Table 8), the
abovementioned genotypes were ranked as 2, 8,
and 9, respectively. However, Genotypes No. 5, 3,
and 13 appeared to be more affected by irrigation
regimes. Furthermore, genotypes 10 and 11
located closer to the center of the axis had values
similar to the grand mean of the most studied
traits (Fig. 2).

On the other hand, genotypes No. 12, 8, 2,
16, 1, 7 and 9 were the inferior for all measured
grain yield-trait combination indicating that
they are more sensitive genotypes to shortage
irrigation and environmental changes (Fig. 2).
Moreno-Ramos et al. (2010) reported that plant
breeding has indirectly increased water use
efficiency in wheat because yield has increased
without additional water use and that it is possible
to produce adequate grain yield under water
restriction. The current results are in harmony
with those obtained by Karaman (2018) and
Juan et al. (2019). The aim of different breeding
programs, including wheat, is to apply selection
tests to improve quantity, quality and stability of
yield under reduction irrigation and furthermore to
develop new drought-adapted genotypes. In fact,
the GY*T biplot (Fig. 1, 2) is a simple graphical
presentation of the standardized GY*T data.
Moreover, the GY*T biplot already allow the
choices of superior wheat cultivars for grain yield
and its components simultaneously. Undoubtedly,
GY*T biplot graph is preferred because of it easy
to interpret and more informative to identify more
accurate selection criteria using grain yield and its
attributes.

Conclusion

In light of the limited water resources in Egypt,
it is important to select yielder genotypes that
are more tolerant to water stress conditions. In
the current investigation, it is obvious that all
genotypes significantly decreased under the stress
conditions for all characters in the two seasons,
except chlorophyll b, proline and harvest index
in the two seasons and 1000-kernel weight in the
I**season. The greatest grain yield was obtained
by genotype 18 under the adequate and stress
irrigation in the two seasons. Genotypes No. 18,
17, 4, and 13 were the best tolerant items under
water stress condition and considered as promising
genotype in wheat breeding programs according

Egypt. J. Agron. 41, No. 3 (2019)

to a genotype by yield*trait (GYT) biplot graph.
The proposed biplot graph (GY*T) proved to be
more accurate tool for selection criteria using
grain yield and its attributes because it is easy to
apply and understand and is more informative.
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