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       RRIGATION management  is  crucial  for  sustainable  agriculture,  particularly  in  water-scarce  

       regions such as arid and semi-arid zones. Soil moisture and evapotranspiration are critical 
parameters that need to be estimated with a high degree of uncertainty to enhance irrigation practices 
and sustainable water management. This review examines various remote sensing techniques, for 
assessing soil moisture and ET with special emphasis on their applicability in agricultural water 
management. We consider the necessity of ET in irrigation scheduling and explain its contribution, as 
well as the use of remote sensing for evaluating crop water demands. Key approaches reviewed 
include multispectral and radar remote sensing, in addition to models for instance the Penman-
Monteith equation, surface energy balance algorithms (SEBAL), and vegetation index (NDVI) for 

monitoring crop health and water demand. This review also explores the issues related to ET 
estimation, which is based on remote sensing including calibration, temporal and spatial resolution 
variability, The findings are summarized to compare the remote sensing approaches to determining 
the volumetric water content of soils and irrigation management in arid regions. Hypotheses and the 
use of remote sensing, and real-world data augmentation superior to augmentation methods such as 
data-casting and deep learning techniques are discussed. The discussion covers hypotheses, the use of 
remote sensing, and real-world data augmentation, which proves superior to methods like data-
casting and deep learning techniques. However, limitations such as ground truth difficulties, model 
calibration, and spatial resolution mismatches remain obstacles. Although this review presents a 

concise summary of the current knowledge on remote sensing for estimating soil moisture and 
evapotranspiration, it is expected that its contribution will be worthwhile for supporting future 
innovations in efficient and sustainable irrigation applications and water management in agriculture. 
 

Keywords: Remote sensing, evapotranspiration, soil moisture, vegetation index, sustainable 
irrigation systems.  

Abbreviations 

 ET: Evapotranspiration 

 RS: Remote Sensing 

 GIS: Geographic Information Systems 

 ETd: Daily Evapotranspiration 

 ETo: Reference Evapotranspiration 

 AET: Actual Evapotranspiration 

 NDVI: Normalized Difference Vegetation Index 

 LST: Land Surface Temperature 

 CWSI: Crop Water Stress Index 

 SEBAL - Surface Energy Balance Algorithm for 

Land 

 MODIS: Moderate Resolution Imaging 

Spectroradiometer 

 SEBS: Surface Energy Balance System 

 TSEB: Two-Source Energy Balance 

 METRIC - Mapping Evapotranspiration at High 

Resolution with Internalized Calibration 

 Kc: Crop Coefficient 

 Kcb: Basal Crop Coefficient 

 FC: Fractional Vegetation Cover 

 EEFlux: Earth Engine Evapotranspiration Flux 

 USGS-FEWS NET: United States Geological 

Survey Famine Early Warning Systems Network 

 MCD12Q1: MODIS Land Cover Product 

 MOD16A2: MODIS Evapotranspiration Product 

 LAS: Large Aperture Scintillometer 

 SETMI: Satellite-based Evapotranspiration and 

Temperature Model Integration 

 DEM: Digital Elevation Model 

 ASTER: Advanced Spaceborne Thermal Emission 

and Reflection Radiometer 

 SRTM: Shuttle Radar Topography Mission 

 NDWI: Normalized Difference Water Index 

 EVI: Enhanced Vegetation Index 

 INDVI: Integrated Normalized Difference 

Vegetation Index 

 ASLE: Agricultural Soil and Land Evaluation 
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 CNN: Convolutional Neural Network 

 EVI: Enhanced Vegetation Index 

 GIS: Geographic Information System 

 LULC: Land Use/Land Cover 

 MODIS: Moderate Resolution Imaging 

Spectroradiometer 

 NDVI: Normalized Difference Vegetation Index 

 P-band SAR: P-band Synthetic Aperture Radar 

 RGB: Red, Green, Blue (color channels in imaging) 

 SAR: Synthetic Aperture Radar 

 SMAP: Soil Moisture Active Passive (satellite 

mission) 

 SSA: Singular Spectrum Analysis 

 UAS: Unmanned Aerial Systems (drones) 

 FAO: Food and Agriculture Organization 

 Fc: Field Capacity 

 IWC: Irrigation Water Consumption 

 LAI: Leaf Area Index 

 RS-ET: Remote Sensing-based Evapotranspiration 

 SAMIR: Satellite Monitoring of Irrigation 

 SWB: Soil Water Balance 

 WP: Wilting Point 

 UAV: Unmanned Aerial Vehicle 

 SSM: Surface Soil Moisture 

 SM: Soil Moisture 

 

1- Introduction 

Irrigated agriculture remains largest sector of water 

consumption in the world, However, the potential for 

future profitability of large-scale irrigated agriculture is 

threatened by new water scarcity conditions that include 

high population pressure densities, global climatic 

changes, and competition with other sectors of the 

economy (Abdelraouf et al., 2019). These indicate 

clearly that, like any other necessity whose major 

concern would be most essential in the arid regions, 

water should be managed to the optimum in these areas. 

This in turn requires the determination of the water needs 

of the crops and/or irrigation frequencies, with ET as one 

of the considerations (Abdelraouf et al., 2020; Kharrou et 

al., 2021; Alhashimi et al., 2023; Hani et. al., 2025). 

Effective water resource management seems to be a 
golden base of agricultural sustainability in arid and 

semi-arid regions (Abdelraouf et al., 2016; Sabra, et al., 
2023; Hany et al., 2025). Evapotranspiration (ET) is a 
critical hydrological phenomenon in such ecosystems. 
ET comprehension and its accurate assessment are 
extremely important for proper irrigation management 
since it defines crop requirements for irrigation water and 
overall water use efficiency. 
A proper system of irrigation is a technique for 
conserving the water supply for future needs. At this 

time, energy, water, and costs are also saved. Hence, the 
study of the dynamics of the ET as well as the 
deployment of the right management measures is 
important in the pursuit of efficiency for suitable 
measures and practices in maintaining water security and 
sustainable farming. (El-Shirbeny et al., 2021; 
Abdelraouf and Ragab 2018) 

ET is defined in terms of millimeters of water and 

directly calculates the amount of water let into the 

atmosphere starting from the surface of the earth and 

hence is dependent on intensity and blackness of fame, 

temperature, humidity, wind, and vegetation. In arable, 

horticultural, and plantation farming, accurate assessment 

of ET is more critical in the evaluation of irrigation 

demands and water rationing for other uses. (Cha et al., 

2020; Abdelraouf  2019; Abd El Lateef, et al., 2025; 

Abdelraouf et al., 2024) 
The conventional methods, like the FAO Penman-

Monteith equation for class A surfaces, are the most 

accurate and reliable because of the genuine and 

controlled climate data involved. But they are very 

expensive, require major maintenance, and only offer a 

relatively small coverage area. This method require high-

quality data and knowledge, and that is why it is hard for 

their implementation, it provides accuracy in the 

estimation of evapotranspiration. 

Different techniques used to estimate evapotranspiration 

from remote sensing are effective and efficient in terms 

of vast area coverage and frequent data acquisition, 

which can greatly aid in large-scale agricultural 

evaluations and basin water supply estimations. Such 

methods employing satellite imagery and UAV provide 

valuable inputs about vegetation vigor and the status of 

moisture in the soil without much requirement of 

massive ground supports. Despite this, remote sensing is 

relatively less accurate than ground sensing because the 

sensors’ readings can be distorted by cloud existence. 

Ground data to calibrate and validate should be 

necessary, which also raises the scale and is more error-

prone yet allows more scientific and rational overall 

management of larger bodies of the area through better 

irrigation, commanding fuller information. 

Due to the challenges associated with the determination 

of ET, its calculation is important and relevant in order to 

enhance efficient irrigation practices and water 

conservation in agriculture. Other prior approaches for 

calculating ET involved in situ measurements and crop 

coefficient estimation. In general, methods used in 

estimating ET have progressed invigoratingly, especially 

with the advancement in remote sensing techniques 

offering geographically and temporally consistent data 

across large areas (Mahmoud and Gan, 2019). 

RS application in agricultural water stress monitoring is 

useful in scheduling irrigation, and productivity of water 

and land alike to improve crop yields. The incorporation 

of RS approaches with GIS improve the spatial analysis 

of ET trends and provide better decision and 

management traits and sustainable water utilization 

strategy (ElShirbeny et al. 2021). 

Familiarizing themselves with the dynamics of 

ET helps farmers adjust their irrigation time and 

frequency and, hence, get the right amount of water for 



 PERFORMANCE OF REMOTE SENSING IN SCHEDULING IRRIGATION: A REVIEW 631 

____________________________ 
Egypt. J. Agron., 47, No. 3 (2025) 

their crops without wasting a lot of water. When 

irrigation is excessive, water may stagnate, form excess 

nutrients, and even lead to high energy usage, while on 

the other side, limited irrigation causes crop stress, loss, 

and low returns. These findings enlighten farmers, and 

they are capable, through the quantification of ET, of 

making suitable choices of the irrigation time, frequency, 

and amount, thereby improving crop production and 

water use efficiency (Cha et al., 2020).  

Mapping irrigated areas and precisely calculating 

irrigation parameters like frequency, time, and amount 

is critical for long-term water resource management in 

semi-arid and arid countries. (Chen et al., 2018) . 

Irrigation water management is critical for agricultural 

sustainability, especially in semi-arid regions prone to 

water constraints. Despite its importance, precisely 

quantifying irrigation water remains difficult due to the 

intricacy of soil-plant-atmosphere interactions (Jalilvand 

et al., 2019; Abdelraouf et al., 2021)). 

Irrigated agriculture is critical to global food security, yet 

accurate data on irrigation water amounts is typically 

unavailable. Traditional methods for monitoring 

irrigation are limited by characteristics such as temporal 

and geographical resolution, stressing the need to use 

remote sensing techniques for improved irrigation water 

management. (Zappa et al., 2021). 

2. Remote sensing 

2.1. Optical Remote Sensing   

Wu et al., (2019) employs a method of optical remote 

sensing, for measuring soil moisture with consideration 

to the existence of vegetation cover. Targeting and 

acquisition of optical remote sensing data will contain 

useful information on the surface of the Earth like 

vegetation indices and soil moisture. Out of all the 

indexes, the authors paid the closest attention to spectral 

signatures and vegetation indices to make improvements 

in the estimation of soil moisture. The objects identified 

by a type of remote sensing used in the analysis of (Wang 

et al., 2023) are air pollutants, wind velocity, specific 

humidity, pressure, temperature, solar irradiance, and 

precipitation with the precision of correct inversion of 

the soil moisture. Backscatter which is derived from 

SAR data and depends on the soil moisture content. 

Multispectral photographic and optical instruments 

provide information on the vegetation cover and the 

overall nature of the entire land surface. Compiling 

results from multiple data sources, the research creates a 

unified dataset for the estimation of soil moisture under 

various circumstances and types of land covers 

There are three key steps: (a) The process of remote 

sensing data required to be stored, preprocessed, and 

analyzed; (b) The utilization of machine learning 

approaches for the interpretation of the remote sensing 

data; (c) The research and development on multi-

disciplinary applications based on remote sensing data 

and intelligent computing approaches. These algorithms 

are designed to perform efficiently when operating on 

large datasets and learn what the more important aspects 

of the data are in the process, thereby improving the soil 

moisture estimates. The great thing about this study is 

how all of these remote sensing inputs can be viewed 

from a single lens and then the exemplified machine 

learning approach which enables near real-time 

measurement of soil moisture. 

In the case of soil moisture content estimation, (Wang et 

al., 2023) utilize multiple sources of remote sensing data 

and deep learning. They have divided remote sensing 

data into Satellite-based sensors including Synthetic 

Aperture Radar (SAR), Optical Imaging, and 

Multispectral Sensors, which constituted the key data 

used in the study. Thus, the data sources are described, 

analyzed, and combined to obtain the final structural 

database of inverted soil moisture. 

The SSA-CNN version is essential to the study's 

technique. SSA is used to cut up remote sensing 

information into several additives, setting apart noise and 

growing the soil moisture sign. The processed facts are 

then analyzed by the use of the CNN structure, which lets 

in for the extraction of complex patterns and traits 

indicative of soil moisture fluctuations (Wang et al., 

2023). The use of SSA and CNN permits high stages of 

accuracy in soil moisture measurement, in particular in 

tough agriculture regions. 

2.2. Microwave Remote Sensing   

Microwave satellite sensors are a viable alternative, 

detecting soil moisture changes independent of weather. 

Because soil moisture products have low spatial 

resolution, microwave sensors have been used in most 

studies for irrigation mapping. For instance, (Jalilvand et 

al., 2019) employed microwave remote sensing to 

estimate the quantity of water that is held in the ground. 

They employed synthetic aperture radar (SAR) data, as it 

operates independently of anyone’s weather patterns and 

gives spatial density. SAR stays in a position to make 

continual moisture measurements of the soil even if there 

are clouds, which indicates that it is ideal for semi-arid 

areas with relatively frequent. 

Microwave remote sensing techniques were applied and 

decreased Sentinel-1 SAR records for the assessment of 

ground soil moisture following a study that was 

conducted by (Zappa et al., 2021). Earthy-colored 

topographical data obtained from the Sentinel 1 SAR 

information has all atmosphere flexibility and an 

extraordinary spatial solution favorable position, making 

it the perfect tool for observing soil moisture on a 

regional scale. This research study would be able to 

identify irrigation instances through the analysis of the 

data from Sentinel SAR, which is sensitive to changes in 

surface soil moisture. 

In addition, they rely on satellite information, including 

Sentinel-1 project data, which contains high-resolution 

soil moisture data with average frequency. Remote 

sensing of microwaves is significant in estimating soil 

moisture, mainly because it can go through both the 

vegetative and the soil covers to produce the soil  (Soylu 

and Bras, 2024). This does so by combining several 



632 AHMED M. SAAD, et al. 

____________________________ 
Egypt. J. Agron., 47, No. 3 (2025) 

remotely sensed data points with hydrological strategies 

to estimate irrigation and its impacts on power and water-

restricting agroecosystems. Hydrological information is 

obtained from satellite-primarily based remote sensing 

techniques to look at and quantify the moisture content of 

soil and, thus, the availability of water in numerous 

agricultural jurisdictions. An assessment of plant life is 

done with multispectral sensors, while microwave 

sensors are used in the assessment of soil moisture. 

2.3. Thermal Remote Sensing   

To estimate the soil moisture that is prevalent in arid 

regions, (Mohamed et al., 2020) primarily used optical 

and thermal imagery. Optical remote sensing measures 

reflected sunlight and near-infrared light to simulate the 

character of the surface, while thermal remote sensing 

transmits thermal energy to gauge the temperature of the 

surface. From this data, the scientists were able to make 

estimations of soil moisture with the help of the 

temperature of the surface and features, the latter being a 

parameter associated with the surface of the land. This 

assessment of surface properties was made adaptive, 

which means it responded to the variation in 

environmental conditions that specify arid zones. Based 

on the study (Paridad et al., 2022), soil moisture is here 

derived from optical and thermal infrared imagery. RGB 

images captured by UAS can depict the surface of the 

area and the presence of vegetation cover, and 

thermographs indicate how the temperature changes 

across the area, suggesting soil moisture. (Paridad et al., 

2022) assumed that accurate estimation of the soil 

moisture conditions in arid and semi-arid regions should 

be achieved with the help of RGB and thermal images 

collected at different time points and sites. 

In the works of (Kragh et al., 2024), four approaches 

utilized in the quantification of irrigation have been 

explained, and they are as follows: The four approaches 

to the quantification of irrigation are based on remote 

sensing Sentinel-1, Sentinel-2, Landsat, and MODIS 

satellite observations, which offer varying prospects for 

the monitoring of irrigation. The authors provide 

quantitative and qualitative evidence of the Normalized 

Difference Vegetation Index (NDVI) and the Enhanced 

Vegetation Index (EVI), which are used for measuring 

changes in vegetation cover density. These indices are 

calculated using different reflectance bands in the visible 

and near-infrared range, captured by multispectral 

satellite sensors, and have become standard indices to 

monitor the dynamics of vegetation cover (e.g., crop 

development) via its response to seasons and climatic 

conditions. Also, (Kragh et al., 2024) look at radar-based 

approaches, with an emphasis on Sentinel-1 Synthetic 

Aperture Radar (SAR) statistics. SAR data can impact 

irrigation activities by providing statistics on soil 

moisture content. This method is excellent for 

monitoring irrigation in all-weather conditions, given 

that cloud cover does not affect SAR facts. Thermal-

primarily-based strategies are also explored, which use 

satellite-derived thermal anomalies to pick out changes in 

land surface temperature associated with irrigation. 

These versions can propose irrigation techniques and 

provide insights into water use performance.   

3. Remote sensing-based estimations 

Numerous methods have been developed to estimate 

evapotranspiration (ET) using remote sensing 

technologies. These methods differ in terms of input 

requirements, spatial and temporal resolution, and 

underlying algorithms. Table 1 provides a comparative 

overview of the most commonly used remote sensing-

based ET estimation methods, highlighting their key 

features, advantages, and limitations.  

Downscaling of remote sensing data with 

evapotranspiration Equations like the Penman-Monteith 

model enable the accurate derivation of references for 

evapotranspiration (ETo) and actual evapotranspiration 

(AET). These models apply different meteorological 

factors, including net radiation, air temperature, wind 

speed, and vapor pressure, to the determination of water 

loss through evapotranspiration. 

Moreover, using remote sensing data simplifies the 

creation of land cover maps and crop coefficients that are 

needed for determining the extent of irrigation and the 

needed amount of water for specific crops. Thus, 

regression models formulated from NDVI data facilitate 

the determination of crop coefficients based on the 

number of days in the growing season and therefore 

enhance the determination of the ET.  (Mahmoud & Gan, 

2019). RS data provides actual information regarding the 

demand for water required for agricultural activities so 

that we can recognize or map the areas of differential 

water demand. Normalized difference vegetation index 

(NDVI), land surface temperature (LST), and crop water 

stress index (CWSI) ratios derived from RS decreased 

over the Sahel region, which is significant for crop 

health, water stress, and irrigation. 

For irrigated regions and to estimate seasonal ET for 

crops (El-Shirbeny et al., 2021) and timely utilize remote 

sensing images to control crop water demands in line 

with irrigation requirements. They use Landsat and 

MODIS images within the SEBAL model to estimate the 

energy balance. According to the study carried out by 

(Cha et al., 2020), the suggested estimating methodology 

entails the estimation of the daily evapotranspiration 

(ETd) value and adopting the constructed ET systems to 

estimate ET during the growth period of the crop. There 

are two methods of evaluating seasonal ET: one is the 

trapezoidal or geometric mean method, while the other is 

the sinusoidal or harmonic mean method. The trapezoidal 

technique uses temporal evapotranspiration difference 

pictures to come up with later on, as well as the 

sinusoidal method by integrating time series of MODIS 

and multitemporal ETd images. (Kharrou et al., 2021) 

assess the possibility of characterizing the temporal and 

spatial variability of ET and irrigation water 

requirements at the field scale through remote sensing-

based techniques in the semi-arid environment. The 

CROP-WATER model uses the FAO-56 Soil-Water 
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Balance model integrated with high-resolution satellite 

imagery, specifically the Normalized Difference 

Vegetation Index (NDVI) data, for deriving basal crop 

coefficients and fractional vegetation cover. The 

technique of studying the areas irrigated by water and 

IWC through the use of remote sensing. To generate the 

maps of present and historical irrigation extent, digitally 

classified maps of the multi-temporal data of Landsat 8 

and Sentinel-2 were prepared. The standard deviation of 

temperature was examined for NDVI and Kc, from 

which the crop evapotranspiration (ET) was computed. 

To back up these estimations and upload ET maps to the 

IWC for the whole nation, ground data synthesis was 

conducted (Chen et al., 2018) . 

3.1. Energy balance method (SEBAL) 

To describe evapotranspiration (ET) as the ratio of the 

energy appearing at the interface of land and atmosphere, 

(Mahmoud & Gan, 2019) utilized energy balance 

methods and reconstructed land surface energy 

exchanges. Such approaches rely on the estimation of 

incoming radiation at the surface from the sun, thermal 

radiation emitted back to space, and the turbulent transfer 

of sensible heat to provide the ET estimates. While 

studying the energy balance components, it was possible 

to establish the amount of energy used for evaporation 

and plant transpiration, which hadn’t been possible 

before due to the insufficiency of the data sets, allowing 

for more comprehensive knowledge of the water cycle 

processes. (El-Shirbeny et al., 2021) used Farinelli’s 

conservative spectral model to estimate LST using 

energy balance methods. LST is defined as the 

temperature inside the crop canopy (Tc) and the thermal 

environment of the plants. The LST was calculated by 

conjoining To and Eo, which is NDVI, and thermal 

emissivity converted into Eo. with the help of NDVI, 

which is derived from satellite data and categorizes a 

wide range of land surface features under reflectance red 

(R) and near-infrared (NIR) waves. The two were 

determined using a calibration constant for radiance in a 

given band. The versatility of LST analysis lets 

researchers identify water stress levels in crops besides 

their physiological condition; it helps in deciding the 

irrigation process and yield improvement. 

The last term in the surface E balance equation that 

represents latent heat is employed to estimate 

evapotranspiration (ET) is used by the study by (Kharrou 

et al., 2021). These methods involve making estimations 

of thermal differences by incorporating the thermal 

sensors and thus arriving at the energy fluxes. In the 

TSEB, SEBAL, and METRIC models, energy balance is 

used, which divides the total net radiation into sensible 

and latent heat flux densities. To estimate 

evapotranspiration and IWC, the energy balance ratios 

along with vegetation indices were used. The energy 

balance-based ET calculation was based on the SEBAL 

(Surface Energy Balance Algorithm for Land) model for 

the energy balance-based ET value, and we used NDVI 

for defining the crop coefficient and for the ET 

calculation. The correlation established between monthly 

average NDVI and Kc constructively aided in achieving 

an accurate representation of evapotranspiration and 

consequently converting it to IWC(Al-Bakri et al., 2023). 

(Abou Ali et al., 2023) utilized the Eddy-Covariance 

system to compare estimates of transpiration and energy 

exchange and meteorological sensors to quantify other 

parameters such as radiation and heat exchange from the 

soil. Moreover, there were established soil moisture 

sensors to measure the water content in the root zone 

near the EC tower at different depths. As applied in the 

SEBAL model, ET was estimated from satellite data at 

specific time steps, and, therefore, ET fluxes in specific 

time steps for the overpass time were predicted (Barman 

and Kamila, 2023). Organized meteorological data was 

obtained from IMD for the study, which includes air 

temperature, wind speed, relative humidity, and sun 

radiation. These parameters were implemented to 

introduce environmental factors to the SEBAL formula. 

Furthermore, slope, which is very important in ET 

estimates, was determined from other DEMs from the 

ASTER and SRTM datasets. 

Kader et al., (2015) used the surface energy balance to 

calculate evapotranspiration (ET), which quantified the 

energy exchanges at the surface of the ground as applied 

by (Mahmoud & Gan, 2019). Such methods rely on the 

remote sensing data as well as the actual meteorological 

conditions to estimate the adjusted ET, accounting for the 

incoming short-wave radiation, surface temperature., and 

vegetation characteristics. Researchers were also able to 

estimate spatially explicit ET with the help of surface 

energy balance methods, which allowed researchers to 

quantify the dynamics of water usage and describe crop 

water requirements in larger areas. 

Surface energy balance methods of  (El-Shirbeny et al., 

2021) were used to estimate CWUE focused on crop 

water stress index. The CWSI developed by Idso et al. 

(1981) and Jackson et al. (1981) is based on the method 

that computes crop water stress levels through the 

variation between potential soil temperature (LST) and 

air temperature (T air). Thus, by comparing the LST and 

Tair data from a time perspective, researchers will be 

able to determine the extent of the crop’s water deficit. 

Also, the surface energy balance methods involve the 

computation of crop water consumptive use using 

evapotranspiration (ETo) and crop coefficients (Kc). 

ETo, which is provided by the FAO-Penman-Monteith 

model, provides climatic features affecting water 

demand, while Kc considers crop characteristics. These 

help the researchers bring into equations water use 

efficiency (WUE) as well as the right irrigation 

techniques that lead to better yields. 

Energy balance techniques applied by (Cha et al., 2020) 

consist of SEBAL, which stands for Surface Energy 

Balance Algorithm over Land, as its name suggests. 

Separate radiative energy balance (SEBAL) works on 

ideal radiation and energy balance, with resistances for 

momentum heat and water vapor transfer incorporated in 
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each pixel. SEBAL then comes up with instantaneous 

evapotranspiration (ETinst) by using multispectral 

satellite imagery data, meteorological data, and digital 

elevation models. These values are obtained from other 

parameters using the necessary parameters of the energy 

balance equation, including albedo, corrected NDVI, TS, 

and emissivity. SEBAL is employed for calculating 

ETinst, the results of which, integrated with LE and other 

data, enable the researcher to comprehend the spatial 

patterns of ET comprehensively across different terrains. 

Surface energy balance algorithms that try to estimate ET 

according to the instance in  (Kharrou et al., 2021) partly 

do so depending on energy flows at the Earth’s surface. 

Crop ET is derived from models like the FAO56 dual 

crop coefficient approach, which involves combining 

rationalism’s major postulates and a system of 

coefficients. Superimposed upon ETo for standard grass, 

by employing crop coefficients (Kcb) and evaporation 

coefficients (Ke), the FAO56 technique refines ETo to 

crop-specific rates. Instead of directly specifying the 

values of Kcb and fc, the NDVI time series are used in 

the calculation of Kcb and fc. As it was mentioned 

before, the linear relationship between NDVI and VIs 

facilitates the possibility of continuing Kcb calculation 

without restrictions in connection with the given 

conventional approaches. Moreover, adjustment of the 

parameters used in the estimation of the rate of soil 

evaporation enhances the computation schemes of 

surface energy balance for various levels of soil moisture 

content. 

In a study by  (Ayyad et al., 2019), a structured approach 

was taken to assess satellite-derived data and irrigation 

efficiency in Egypt. The researchers initially used the 

MODIS land cover product (MCD12Q1) to pinpoint 

regions. They compared three products, namely 

(EEFlux), USGS FEWS NET SSEBop, and 

GOTTHARD/2 MODIS, monthly actual 

evapotranspiration products: MOD16A2. Those products 

were evaluated with data at the same time, with the 

Normalized Difference Vegetation Index (NDVI) 

embedded for seasonal and annual assessment, Since 

capturing images of wheat fields, (Gómez-Candón et al., 

2023) have used aerial vehicles (UAVs) fitted with 

multispectral cameras. The images captured were then 

digitally enhanced to develop vegetation indices such as 

the Normalized Difference Vegetation Index (NDVI), 

which provides information on the health condition and 

vigor of the crop. Other energy balance algorithms, like 

the Surface Energy Balance Algorithm for Land SEBAL, 

were used to estimate ET using energy balance over the 

dark crop surface. Regarding the remote sensing aspect 

of the study in question, introduced by (Elfarkh et al., 

2023), ET and related parameters were indirectly 

measured based on a differentiated high-resolution 

satellite image. The Sentinel 2 satellite, with its function 

of capturing different types of images, employs spectral 

bands and has a resolution of between 10 and 60 meters. 

This detailed data enables the assessment of the 

vegetation cover, which can be used to estimate 

evapotranspiration by using the SEBS method. 

SEBS then estimates the retrieval of ET based on energy 

balance at the uppermost layer of the earth using satellite 

data on temperature, reflectance, and color similar to 

NDVI. On the ground, it validates its ET estimation with 

oversight, especially when there are areas that need 

repair due to the effects of Mother Nature. Satellite data 

adds to the vast voluminous data acquired using eddy 

covariance on the ground and offers rich insights into ET 

and related phenomena. Nevertheless, it is revealed that 

the integration of both approaches offers a more 

comprehensive picture of ET in regions with intensive 

olive trees. (Elfarkh et al., 2023) 

This has been confirmed in the study done by 

(Scintillometer et al., 2024), where the authors employed 

both ground observations and remote sensing approaches 

for their strategies. Ground-Based Observations: This 

technique enabled the researchers to measure sensible 

heat flux over a long distance using the Large Aperture 

Scintillometer (LAS). This data was then used to 

estimate ET using the energy balance method. Here, the 

net radiation, Rn, sensible heat, H, and latent heat flux, 

LE, were measured and used in the following equation. 

Indeed, by performing net radiation balance, heat 

conduction, and sensible heat transfer, they were able to 

deduce the latent heat transfer, which is highly correlated 

to ET. As a part of the ground-based observations, the 

use of the SETMI model was also involved in 

performing the remote sensing of the atmosphere. 

The following model forecasts ET from satellite data, but 

for a wider range of calibration scales. Using the data 

obtained from the meteorological department, together 

with the data received from communication satellites, the 

SETMI model can determine the bye-areal value of ET. 

The authors, in distinct ways, used data from satellite 

imagery from Landsat and MODIS to accomplish 

vegetation indices that are an essential input to the 

SETMI model. These vegetation indices offer significant 

and extremely useful data on vegetation health and 

activity in a particular region, which are mandatory for 

the right computation of ET. By integrating the data 

gained through LAS and the predictions given out by the 

SETMI model, the researchers were finally able to arrive 

at a multifaceted estimate of ET in some geographical 

regions. 

3.2. Vegetation indices 

In their study (Mahmoud & Gan, 2019), crop coefficients 

(Kc) estimation used vegetation indices from remote 

sensing data, including the MODIS normalized 

difference vegetation index (NDVI). Through NDVI, 

helpful data about vegetation density and vigor, as well 

as the phase of their growth, could be obtained based on 

spectral reflectance evaluation. These indices were 

employed in input functions for modeling Kc so that 

further research correlations and physical links between 

NDVI and Kc estimates could be built, which might be 
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pivotal for assessing agricultural water requirements on 

large geographical scales. 

Researchers, including (El-Shirbeny et al., 2021), used 

vegetation indices, including NDVI, to classify land 

surface targets according to their spectrally distinctive 

characteristics. The vegetation density and vigor can be 

determined using NDVI, which is extracted using the 

satellite data that is present in the R and NIR bands. This 

study involved the use of NDVI to work in tandem with 

energy balance methods to come up with Eo, which in 

itself is vital in the computation of LST. Scientists may 

employ the values of NDVI in their studies for vegetation 

condition assessment, crop status, and water deficit 

determination. 

Meteorological global ET can be assessed through 

physiographic data or remote sensing with vegetation 

indices such as the NDVI. From the satellite data, the 

NDVI work (Cha et al., 2020) is received from the 

nearby infrared or red bandwidth, with the help of which 

the vegetation health condition can be known. A high 

NDVI value shows that it has dense vegetation cover, 

which implies efficient photosynthesis, which in turn 

leads to losses through evapotranspiration. In this 

manner, using the NDVI in models of ET estimation, 

researchers are provided with numerical capabilities that 

help enable the identification of the extent to which plant 

cover change influences water vapor exchanges within 

the biosphere and species’ transpiration as a 

consequence, increasing the accuracy of estimations. 

(Kharrou et al., 2021) cited that vegetation indices (Vis) 

are a strong tool for analyzing biophysical properties 

from satellite data and that the NDVI is the most popular 

tool among them. Specifically, NDVI is derived from the 

NIR and R reflectance and provides information about 

whether the vegetation conditions are healthy or 

vigorous. Kcb and fc times series can be directly derived 

from the NDVI time series; interpolation is then used to 

determine temporal patterns of the biophysical 

components. For estimating the ET, it is indispensable to 

identify Kcb and fc with the help of linear relationships 

between some NDVI and VI, which are determined. 

The study that was under consideration, namely (Kadri et 

al., 2023), used both techniques based on the analysis of 

remote sensing data as well as soil-water modeling. The 

remote sensing part is accomplished by using 

synthesized images with a spatial resolution of near-

infrared and thermal infrared from the satellite in an 

attempt to estimate the ET. Here, the data from both 

Sentinel-2 and Landsat bands is used to make indices 

such as the Normalized Difference Vegetation Index 

(NDVI) and the Enhanced Vegetation Index (EVI). These 

indices are often used for establishing vegetation cover 

and are intricately linked with ET. The method referred 

to as the soil water simulation implies estimating ET as a 

function of the simulation of the soil water balance. It 

covers variables including humidity, temperature, 

rainfall, and other weather factors. In the hydraulic 

interpretation, the process is modeled as the soil-water 

balance. 

Wang et al., (2023) utilized a remote sensing ET through 

the agricultural model to model the ET and yield of 

wheat and maize crops. The scientists used the Surface 

Energy Balance Algorithm for Land (SEBALs) technique 

to estimate ET from the satellite images. The model 

computes heat flux in terms of meteorological data and 

remote sensing without direct representation of ET 

values at time durations. Imagery data from sources 

including Landsat and MODIS was used in this study to 

fill the data requirements for this research. In addition, 

the assessment of the model was based on ground-based 

data, much to the success of the entire process. Specific 

to the canopy water status, which can be estimated by the 

spectral vegetation index, the study used the remote 

sensing technique as described by (Solgi et al., 2023). 

The researchers in the study collected data from irrigated 

winter wheat fields using satellite-based sensors and 

unmanned aerial vehicles at various scales. These 

photographs wash the usage and were subjected to an 

activity called enhancement, which resulted in the 

creation of vegetation indices, for instance, the NDVI 

and NDWI, which, as the abbreviation stands for, the 

vegetation health status as well as levels of water, 

respectively. The NDVI is therefore derived using the 

values of the near-infrared band and the red band to 

produce a ratio of the vegetation’s light absorption. 

Similarly, NDWI for wetness and near-infrared and 

shortwave infrared bands are considered. The 

combination of all the above variables provides full-

blown information on the canopy water condition and 

provides a way for monitoring changes. 

3.3. Soil Moisture 

Accurate estimation of soil moisture content is essential 

for hydrological modeling, irrigation planning, and 

drought monitoring. Remote sensing technologies offer 

several approaches for estimating soil moisture over 

large spatial scales with varying degrees of accuracy and 

resolution. Table 2 presents a comparison of various 

remote sensing methods used to estimate soil moisture 

content, outlining their principles, data sources, and 

typical applications.  

With remote sensing, the amount of water used for 

irrigation has been monitored through proportional 

measurements of soil moisture. Some rules of irrigation 

from the work of (Jalilvand et al., 2019) include that 

adequate time for irrigation has to be chosen depending 

on the developmental stage of plants and the weather 

conditions. They then began to pinpoint periods of 

irrigation by looking at the variation of the soil’s 

moisture content at different times and in different 

locations. By adapting methods that are used in 

hydrology and meteorology, it was possible to 

approximate the ratio, indicating the actual amount of 

water utilized for the irrigation process without losses 

due to evapotranspiration as well as drainage. 
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The study conducted by (Wu et al., 2019) proposed a 

method that targets providing accurate estimating and 

mapping of soil moisture while including the effect of 

vegetation cover. Colleagues opted to use a procedure 

where data from different remote sensing platforms was 

fused and sophisticated signal processing techniques 

were applied to determine signals resulting from the 

difference between soil and plants only. Some of the 

steps that were involved in this approach were the pre-

processing of remote sensing data, vegetation indices 

standardization, model calibration for assessing soil 

moisture, and methodology confirmation through the 

measurement of ground data. 

In the study conducted by (Mohamed et al., 2020) on the 

impact of soil moisture on crops using geospatial data 

and analysis, the authors built a method that uses resident 

data on crops and geospatial analysis to map the soil 

moisture and crop distribution in arid regions. As 

explained by the procedure outlined in (Mohamed et al., 

2020), the researchers then collected information from 

different sources, such as optical and thermal images, to 

derive soil moisture data. Once the samples of the soil 

were taken, the team used mathematical models, also 

known as algorithms, to predict the level of moisture in 

the ground. To analyze the correlation between soil 

moisture and crop efficiency more deeply, the researchers 

used other remote sensing technologies like spatial 

statistics, which include spatial interpolation of data, and 

regression modeling, which looks into the level of 

association between two parameters. Once through the 

above process, the team compared their findings to come 

up with a conclusion on how water availability impacts 

crop yield in the desert. 

A recent study by (Zappa et al., 2021) calibrated the SSM 

from Sentinel-1 to estimate the irrigation water amount, 

and it was done at a 500–500-meter scale by using SM 

data. It therefore implies that before getting into the 

analysis of the Sentinel 1 satellite data presented, there 

was a need to carry out calibration, which is the process 

of correcting systematic errors, and validation, which 

endeavors to compare the result with that of ground-

based measured data. By adopting a statistical analysis 

that adopts a change detection framework, the team was 

able to investigate the actual instances of irrigation in 

regard to the degree of change in soil moisture. Once the 

timing of the irrigation episodes had been established, the 

researchers calculated the quantity of water that was 

applied during each event. To validate the results derived 

from the team’s methodology, the amount of irrigation 

from the farmer respondents at the field level was 

checked with the results of the study. These works 

exemplify how high-consequence technologies and data 

analysis can be applied to learn about the moisture of the 

ground and effectively use water in areas that are arid for 

agriculture. 

Zappa et al., (2021) used satellite soil moisture data to 

decide irrigation timing and quantities. They analyzed 

how soil moisture changed over time and the use of 

satellite records. Their purpose changed into discovering 

times of irrigation and calculating how much water was 

utilized by searching for changes in soil moisture levels. 

To recall the vertical motion of water that affects soil 

moisture, they blended soil moisture statistics with a 

formulation for evapotranspiration (water loss from 

plants and soil) and drainage. On the other hand, (Paridad 

et al., 2022) predicted soil moisture through the use of 

unmanned aerial structures (UAS) prepared with RGB 

and thermal sensors. They flew those UAS over to have a 

look at the vicinity to capture RGB and thermal pictures. 

At the same time, in addition, they took direct 

measurements of soil moisture with the use of sensors 

positioned inside the ground. By studying the photos and 

organizing relationships among the RGB/thermal values 

and soil moisture, they have been capable of determining 

soil moisture values across the entire study region. 

To examine whether or not the land is appropriate for 

cultivation, a holistic strategy was used in trying to check 

whether or not the analysis was stated (Abdelrahman, 

2019). This technique entailed the act of data reading and 

information sensing beyond a certain geographical space 

and geographical information system. To comprise the 

entire take-a-look-at location, 40 soil profiles were 

chosen deliberately. These profiles were then tested for 

various physical and chemical properties, including touch 

sensation, organic matter content, conductivity, pH, and 

cation exchange capacity. The one that has been looked 

at in the preceding is a consideration of two mechanisms 

for evaluating land talents. Features that were considered 

by the ASLE program included weather, soil texture, 

drainage, and fertility to determine the nature of the land. 

Information used for the assessment was based on the 

Modified Storie Index, which involved rankings 

according to weighted factors that reflected soil 

parameters capacitive of the land. Integrated with these 

strategies and as the outcome of collecting data, the 

researchers were able to draw knowledgeable 

conclusions as to whether or not the particular land was 

suitable for agriculture. 

To assess if the land is appropriate for farming, the study 

conducted by (Abdelrahman, 2019) used a further 

method that embraced factual soil data, bibliographic 

faraway sensing, and GIS software. So, they agreed to 

select forty soil profiles to investigate the region of 

interest. These profiles have additionally studied various 

bodily and chemical properties, which include texture, 

organic reminiscence content material, electrical 

conductivity, pH extent, and cation exchange capacity. 

For instance, in the case of ASLE application, factors 

such as weather, soil type, drainage, and fertility level 

were deemed essential in evaluating land talons. On the 

other hand, the Modified Storie Index gave ratings 

emphasizing weighted factors each drawn from 

parameters obtained from soil for assessment of land 

abilities. 

The procedures used in (Ma et al., 2022b) use time series 

records from Sentinel-1 and Sentinel-2 to discover 
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irrigation episodes and investigate agricultural dynamics. 

Sentinel-1's radar information enables all-climate 

monitoring, imparting huge records on soil moisture 

content, material, and irrigation styles. Sentinel-2's 

multispectral information provides statistics on plant 

indices that may be used to screen agricultural increase 

and health (Ma et al., 2022b), mixed with several satellite 

statistics sources to generate a time collection that tracks 

adjustments in soil moisture and flower cover. The 

authors use Sentinel-1 radar backscatter to determine soil 

moisture modifications that imply irrigation episodes. 

Sentinel-2's multispectral facts are used to create flora 

indices, which include the Normalized Difference 

Vegetation Index (NDVI), which allows the authors to 

study crop dynamics and growth degrees. 

To study the impact of irrigation scheduling schemes on 

soil moisture and crop output (Schattman et al., 2023), 

have a look at using a combined-methods approach that 

protected discipline trials and questionnaires. Field 

checks have been executed in two places (Maine and 

Vermont) over growing seasons, utilizing three irrigation 

scheduling strategies: the "feel" technique (guide soil 

texture assessment), granular matrix sensors, and timer-

primarily based irrigation. These techniques were used to 

monitor soil moisture content to decide how they 

affected soil-water conditions, leaching, and crop 

production. 

Supriyasilp et al., (2022) offered an intensive explanation 

of the remote sensing techniques used in the research. 

Microwave sensors have been used for subsurface 

moisture assessment, supplying statistics about soil 

moisture at various depths inside the root zone. Optical 

remote sensing techniques used surface reflectance 

features to estimate soil moisture content, while thermal 

remote sensing diagnosed surface temperature 

fluctuations that indicated underlying soil moisture 

levels. Integrating more than one remote sensing 

modality improved the accuracy and reliability of soil 

moisture estimation. (Stefan et al., 2021) used several 

remote sensing strategies to quantify soil moisture 

content: Use of excessive-resolution SMAP-derived 

information: The researchers analyzed information from 

the Soil Moisture Active Passive (SMAP) satellite 

assignment to create entire soil moisture estimates. 

Applying an exponential filter model: Adopting an 

exponential clear-out model affords a new perspective on 

digesting SMAP-derived facts for estimating root-quarter 

soil moisture. This model, which is customized to diverse 

land cowl kinds, exhibits resourcefulness in dealing with 

the complicated spatial and temporal complexities of soil 

moisture dynamics. (Ma et al., 2022a) address the critical 

need for excessive-resolution soil moisture records that 

are required for effective water aid management, 

agricultural making plans, and weather studies. The 

observation determined that combining Sentinel-1 and 

Sentinel-2 statistics considerably improves soil moisture 

map accuracy. The incorporated approach captures soil 

moisture spatial variability rather than unmarried-source 

records. Validation in opposition to floor-based 

measurements results in an extensive improvement in 

estimating accuracy, confirming the approach's 

robustness and reliability. 

Integrating numerous modern remote sensing techniques 

with a novel optical-trapezoid model improves soil 

moisture estimation accuracy and agricultural tracking 

skills (Ma et al., 2022a). Advanced remote sensing 

techniques were used in the (Ma et al., 2022 a) 

investigation, consisting of high-resolution multispectral 

snapshots from Sentinel-2 to perceive soil from plants 

and vegetation indices along with NDVI to estimate soil 

moisture. The optical-trapezoid model analyzes spectral 

records to determine soil moisture. Temporal evaluation 

monitors versions of soil moisture and crop boom during 

the season, providing useful insights into agriculture. 

Combining radar and optical remote sensing records 

from Sentinel-1 and Sentinel-2 satellites. Sentinel-1 radar 

pixels (Steinhausen et al., 2018) take into consideration 

surface roughness and moisture records, while Sentinel-2 

optical photographs collect particular surface attributes. 

They are up-to-date and have preprocessed the statistics 

to deal with worries about cloud cover. They extracted 

crucial functions by using Sentinel-2 vegetation indices 

and Sentinel-1 backscatter readings. These statistics were 

incorporated and processed with the use of system 

getting-to-know strategies, yielding more correct LULC 

maps. This technique handles cloud cover and 

environmental fluctuation efficaciously, bearing in mind 

splendid accuracy in recognizing vegetation areas. 

Fluhrer et al., (2024) use superior techniques like P-band 

SAR polarimetry, hydrological, and multi-layer 

scattering models to estimate soil moisture. P-band SAR 

digs deep into the soil, giving specified moisture 

information. Hydrological fashions simulate water 

motion, displaying moisture changes through the years. 

Multi-layer scattering fashions improve accuracy by 

considering distinct soil layers. Results show that this 

incorporated method gives extra-accurate soil moisture. 

Integrating high-decision soil hydraulic parameters with 

Earth observations substantially enhances the accuracy 

and spatial resolution of root region soil moisture 

(Thomas et al., 2023) and makes use of exclusive remote 

sensing methods consisting of optical imagery that looks 

at the land cowl, plant life, and surface temperature to 

peer how they affect soil moisture, radar imagery like 

Sentinel-1, which examines soil residences and moisture 

even via clouds and vegetation, and thermal imaging. 

3.4. Land surface temperature (LST) 

Land Surface Temperature (LST) is a key remote sensing 

parameter representing the radiative temperature of the 

land surface and serves as an integrated indicator of soil 

moisture, vegetation activity, and surface energy balance, 

especially in arid and semi-arid environments. Unlike air 

temperature, LST is highly sensitive to surface properties 

such as soil composition, color, and vegetation cover, and 

responds directly to seasonal variations in soil moisture 

and climatic conditions. Research in desert and semi-arid 



638 AHMED M. SAAD, et al. 

____________________________ 
Egypt. J. Agron., 47, No. 3 (2025) 

regions, such as the work of Ali and Shalaby (2012), has 

demonstrated that topsoil features and LST exhibit 

pronounced seasonal fluctuations, with higher 

temperatures during dry, barren periods and moderated 

values when soil moisture and vegetation increase. These 

dynamics make LST a valuable tool for diagnosing 

environmental stress, monitoring drought, and guiding 

sustainable land and water management. Contemporary 

advances in satellite thermal infrared technologies have 

further enhanced the ability to map and interpret LST 

patterns, empowering researchers and practitioners to 

monitor landscape functioning and land degradation risks 

in near real-time (Shahfahad et al., 2023). 

 

4. Performance of remote sensing methods for 

evapotranspiration estimation in arid environments 

 

a. Methodological Approaches and Techniques 

i. FAO Penman-Monteith Method with GIS  

Mahmoud and Gan, (2019) used the FAO Penman-

Monteith method with GIS techniques to create a spatial 

model of reference evapotranspiration (ETo) on a grid. 

This combination, along with empirical NDVI-Kc 

relationships, greatly enhanced the accuracy of 

estimating actual ET (AET) at the pixel level. 

ii. Soil Water Balance (SWB) Model 

Mahmoud and Gan, (2019) also used the SWB model, 
but to simulate daily AET with very good agreement to 

observed values. With validation against observed 
values, we can assess whether the model fits relatively 
well. Note that there are discrepancies in relative 
humidity (%) indicated with dots occurring in certain 
months, suggesting the need for ongoing refinement of 
the model. 
 

b. Spatial and Temporal Patterns of 

Evapotranspiration 

i. Monthly and Annual AET Maps 

 

Higher AET values have been observed in irrigated 
croplands, and (Mahmoud & Gan, 2019) developed maps 
illustrating geographical changes in water demand; this 
notable change suggested a favorable trend in long-term 
daily AET. 

ii.  Soil Moisture Dynamics 

El-Shirbeny et al., (2021) employed wilting point (WP) 

and field capacity (Fc) to get insights into crop water 

availability. His research emphasized the need for 

targeted irrigation because of soil property variability by 

highlighting geographical changes in FC and WP. 
 

c. Performance Evaluation and Model Applications 

i. SEBAL (Surface Energy Balance Algorithm for 

Land) Model 

Despite its accuracy, the SEBAL version's effectiveness 

in estimating ET for cotton in the Kai-Kong River Basin 

changed as demonstrated with the aid of (Cha et al., 

2020). However, the limited availability of Kc records 

made it hard to validate ET for various plants, indicating 

that move-crop validation and the usage of lysimeter 

measurements have to be the focus of destiny research. 

ii. FAO56 Model 

Kharrou et al., (2021) applied the FAO56 version in 

SAMIR (Satellite Monitoring of Irrigation) software 

program to estimate ET for wheat and olive trees. The 

model confirmed promising accuracy, but variability in 

irrigation practices and climate changes revealed an 

opening between modeled and actual practices. 

 

d. Agricultural Water Management 

i. Mapping Irrigated Areas and Estimating IWC 

(irrigation water consumption) 

The need for proper water management turned into 

underlined by (Al-Bakri et al., 2023)  who employed 

remote sensing to map irrigated zones and estimate 

irrigation water consumption (IWC). Discrepancies 

among pumped groundwater and pronounced abstraction 

highlighted problems inclusive of illicit abstraction. 

 

ii.  Daily ETa and LAI (leaf area index) Estimates 

Gómez-Candón et al., (2023) estimated daily cumulative 

ETa and leaf area index (LAI) for wheat, a positive 

asymptotic relationship between crop yield and ETa was 

found, with genetic analysis suggesting opportunities for 

selecting resource-efficient wheat varieties. 

 

iii. Optimization of Crop Irrigation 

Abou Ali et al., (2023) focused on optimizing irrigation 

to reduce water loss and improve efficiency, high deep 

percolation rates indicated a need for better irrigation 

scheduling. Derived Kc values provided insights into 

citrus crop water requirements at different growth stages. 

 

e. Combined Methods and Addressing Uncertainties 

 

i. Combining Ground-Based and Satellite 

Methods 

Abou Ali et al., (2023) used eddy-covariance at ground 

level and SEBS derived from satellites to estimate ET 

that method proved effective in giving both the field and 

regional estimations of ET. Nevertheless, there were 

issues in methods of scaling and verification concerning 

remote sensing of environmentally variable phenomena. 

 

ii. Assessing Uncertainties in RS-ET Estimates 

Tran et al., (2023) presented approaches for estimating 

uncertainties in remote sensing-based ET estimation; it 

was also highlighted that validation against ground 

measurements with the eddy covariance method was 

crucial. The review pointed out that future studies should 

enhance spatial and temporal resolutions and identified 

that they ran into issues in the validation of their results 

on the global scale because of the scarcity of data from 

the ground. 
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Table 1. compares various methods for Evapotranspiration using remote sensing technologies. 

 

 

Reference 

Remote 

Sensing 

Techniques 

Input Variables 
Satellites / Tools 

Used 

Models 

Employed / Other 

Techniques 

Advantages Limitations 

(Mahmoud & Gan, 

2019) 

Energy 

balance 

methods 

Solar radiation, 

thermal radiation, 

sensible heat flux 

MODIS, 

meteorological 

data 

Penman-Monteith 

equation, surface 

energy balance 

algorithms 

Comprehensive water cycle 

understanding, large spatial 

scale monitoring 

Requires detailed 

meteorological 

data, complex 

modeling 

(El-Shirbeny et al., 

2021) 

Energy 

balance, 

vegetation 

indices 

LST, NDVI, 

emissivity, solar 

radiation 

MODIS, 

Sentinel-2 

 

SEBAL, CWSI, 

FAO-Penman-

Monteith 

 

Assesses crop water stress, 

detailed physiological status 

monitoring 

High data 

processing 

complexity, 

reliance on 

accurate emissivity 

estimates 

(Cha et al., 2020) Optical ETd, NDVI, LST Landsat, MODIS 

SEBAL, 

trapezoidal and 

sinusoidal 

methods 

Seasonal ET estimation, 

integration of time-series data, 

comprehensive ET dynamics 

understanding 

 

Requires multi-

temporal data, high 

computational 

demands 

(Kharrou et al., 

2021) 
Optical 

NDVI, solar 

radiation, surface 

temperature 

Landsat 8, 

Sentinel-2 

FAO-56 Soil-

Water Balance 

model, TSEB, 

SEBAL, METRIC 

Accurate crop coefficient 

estimation, high-resolution 

spatial analysis 

Complex 

integration of 

models and remote 

sensing data 

(Cohen.2019) 
 

Optical 

NDVI, land cover, 

crop coefficient 

Landsat 8, 

Sentinel-2 

Regression 

models, empirical 

relationships 

High-resolution maps of 

irrigated areas, effective ET 

estimation for large regions 

Requires extensive 

ground validation, 

complex data 

processing 

 

(Al-Bakri et al., 

2023) 

Energy 

balance,  

Thermal, 

Optical 

NDVI, 

meteorological data, 

DEM 

 

Landsat, 

MODIS, ASTER, 

SRTM 

SEBAL 

Accurate ET mapping, 

integration of multiple data 

sources 

High complexity in 

data integration, 

detailed DEM 

requirement 

(Abou Ali et al. 

2023) 

Eddy-

Covariance 

system 

Radiation, soil heat 

flux, meteorological 

data 

Ground-based 

sensors, EC 

system 

Energy balance 

closure (EBC) 

High accuracy of ET 

measurements, validation with 

ground data 

Limited spatial 

coverage, high cost 

and maintenance 

of EC systems 

(Barman and 

Kamila. 2023) 

Energy 

balance, 

meteorolog

ical data 

Solar radiation, 

wind speed, 

temperature, 

humidity 

SEBAL, DEM SEBAL 

Detailed ET dynamics 

understanding, integration of 

meteorological data 

Requires detailed 

DEM, complex 

data processing 

(Ayyad et al. 

2019) 

Optical, 

energy 

balance 

NDVI, 

meteorological data 

MODIS, EEFlux, 

USGS-FEWS 

NET SSEBop 

Surface energy 

balance 

algorithms, 

empirical 

relationships 

Effective irrigation efficiency 

assessment, multi-sensor 

integration 

 

High processing 

complexity, need 

for extensive 

validation 

(Gómez-Candón 

et al. 2023) 
Optical 

NDVI, crop health, 

radiation balance 

UAVs, 

multispectral 

cameras 

SEBAL 
High-resolution ET estimation, 

flexibility in data acquisition 

Limited spatial 

coverage, high cost 

of UAV operation 

(Elfarkh et al. 

2023) 
Optical 

NDVI, surface 

temperature, albedo 

 

Sentinel-2 

 

SEBS 

 

 

 

Detailed analysis of vegetation 

cover, accurate ET estimation 

High 

computational 

demands, reliance 

on accurate ground 

calibration 

(Scintillomet et 

al. 2024) 
Optical  

Sensible heat flux, 

net radiation, soil 

heat flux 

Landsat, MODIS 
SETMI, energy 

balance approach 

Comprehensive ET estimation 

across different scales, 

integration of ground-based 

and satellite data 

Complex 

integration of 

ground and 

satellite data, high 

computational 

demands 

(Solgi, Ahmadi, 

and Seidel. 2023) 
Optical 

NDVI, NDWI, 

canopy water status 
Landsat, UAVs 

Vegetation indices 

analysis 

 

Detailed canopy water status 

assessment, high-resolution 

spatial analysis 

Requires accurate 

calibration, high 

data processing 

complexity 
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Table 2. Various methods for estimating soil moisture content using remote sensing technologies. 

Reference 
Remote Sensing 

Type 

Root Depth 

Estimated 
Satellite/ sensor 

Models Employed / 

Other Techniques 
Advantages Limitations 

(Jalilvand et al., 

2019) 

Microwave 

 
0-5 cm Sentinel-1 SAR 

Hydrological and 

meteorological models 

All-weather capability, 

high spatial resolution, 

effective in semi-arid 

regions 

Complex 

processing, need 

for ground 

validation 

(Zappa et al., 

2021) 

Microwave 

 
0-5 cm Sentinel-1 SAR 

Statistical algorithms, 

change detection 

methods 

High resolution, all-

weather capability, 

validated with field 

data 

Calibration and 

validation with 

ground data 

required 

(Zappa et al., 

2021) 

Microwave 

 
0-5 cm Sentinel-1 SAR 

Spatiotemporal 

analysis, 

evapotranspiration 

formulations 

Effective for irrigation 

monitoring, integrates 

multiple data sources 

Complexity in 

integrating 

different data types 

(Schattman et al., 

2023) 

Field studies, 

surveys 
Various 

Field experiments, 

surveys 

Mixed-methods 

approach 

 

 

Practical insights into 

irrigation practices 

combine field data and 

farmer preferences 

Limited spatial 

coverage, 

dependent on 

survey responses 

(Supriyasilp et 

al., 2022) 

Microwave, 

optical, thermal 

remote sensing 

Various 

Microwave 

sensors, optical and 

thermal satellites 

Integration of diverse 

remote sensing 

modalities 

Enhanced accuracy 

and reliability, 

combines multiple 

techniques 

High complexity in 

data integration and 

processing 

(Stefan et al., 

2021) 

High-resolution 

SMAP-derived 

data, exponential 

filter model 

0-100 cm 

(root zone) 

Soil Moisture 

Active Passive 

(SMAP) 

Exponential filter 

model 

High spatial 

resolution, tailored 

model for different 

land cover types 

Requires high-

resolution SMAP 

data, model 

application 

complexity 

(Ma, Li, and 

McCabe. 2020) 

Sentinel-1, 

Sentinel-2 
0-5 cm 

Sentinel-1, 2 

 

Machine learning 

algorithms 
  

(Ma, Johansen, 

McCabe. 2022b) 

Radar 

Multispectral 

(Sentinel-2) 

0-5 cm 

(surface) 

Sentinel-1, 2 

 

Time series analysis, 

vegetation indices, 

radar backscatter 

analysis 

Captures soil moisture 

and vegetation 

changes effectively, 

with high temporal 

resolution 

Data preprocessing 

complexity, 

integration of 

multiple data types 

(Steinhausen et 

al., 2018) 
Optical 

0-5 cm 

(surface) 

Sentinel-1, 2 

 

Machine learning 

techniques, data fusion 

High accuracy in 

vegetation and urban 

area identification, 

effective cloud cover 

handling 

Data correction and 

preprocessing 

complexity 

(Fluhrer et al., 

2024) 

Microwave, 

hydrological 

models, multi-

layer scattering 

models 

0-100 cm 

Subsurface 

(deep layers) 

Ground-based soil 

moisture sensors, 

P-band SAR 

Hydrological models, 

multi-layer scattering 

models. 

Deep penetration for 

detailed moisture data, 

high accuracy with 

integrated models 

High complexity in 

data processing and 

model integration 

(Thomas et al. 

2023) 

Optical Imagery, 

Microwave 

Thermal 

Root zone 

(various) 

Ground-based 

sensors, UAVs 

equipped with 

RGB and thermal 

sensors 

Integration of soil 

hydraulic parameters 

with Earth 

observations. 

 

High accuracy and 

spatial resolution for 

root zone soil moisture 

 

Data availability 

and processing 

complexity 

(WU et al., 2019) Optical Imagery Surface 
Multiple-spectral 

and hyper-spectral 

Advanced algorithms, 

vegetation indices 

normalization 

Separates soil and 

vegetation signals, and 

integrates various data 

sources for improved 

accuracy 

Extensive 

preprocessing 

requires calibration 

and ground truth 

measurements 

(Mohamed et al., 

2020) 

Optical and 

thermal imagery 

Surface to 

root zone 

(~0-100 cm) 

Optical and 

thermal satellites 

Geospatial analysis, 

spatial interpolation, 

regression analysis 

Combines optical and 

thermal data, effective 

in arid regions 

Complex data 

processing, weather 

dependency 

(Paridad et al., 

2022) 

optical and 

thermal 
Surface 

UAS equipped 

with RGB and 

thermal imaging 

sensors. 

Image processing 

techniques, empirical 

relationships. 

High spatial 

resolution, flexible 

deployment 

Limited coverage 

area, dependent on 

flight conditions 

(Abdelrahman. 

2019) 

Optical, GIS 

tools 
Various Not specified????? 

Applied System of 

Land Evaluation 

(ASLE) program, 

Modified Storie Index. 

Comprehensive land 

capability assessment 

integrates multiple 

data sources 

Extensive soil data 

and GIS expertise 

required 

(Kragh et al., 

2024) 

Microwave, 

Multispectral 

Surface to 

root zone 

(~0-100 cm) 

Sentinel-1, 2 

Landsat, MODIS 

Various remote sensing 

and modeling 

techniques 

Wide range of 

methods for different 

conditions, effective 

for irrigation 

monitoring 

Complexity in 

integrating multiple 

techniques and data 

sources 
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5. performance of remote sensing methods for soil 

moisture content estimation in arid environments 

 

a. Integration with Geospatial Techniques 

Jalilvand et al., (2019) showed remarkable 

accuracy in identifying irrigation events and water 

volume predictions. Among the difficulties include 

uncertainties in irrigation time and limitations in 

temporal resolution. 

b. Soil Moisture Estimation in Vegetated Areas 

Wu et al., (2019) revealed a notable increase in 

accuracy. Significant issues are the complexity of 

vegetation-soil interactions and calibration/validation 

methods. 

c. Spatial and Temporal Analysis 

i. Soil Moisture and Crop Patterns  

The detailed maps of soil moisture provided by 

(Mohamed et al., 2020) investigate crop type correlations 

and geographical variability. Challenges include limited 

spatial resolution, algorithm development, and data 

integration. 

ii. Real-Time Monitoring with Sentinel-1 

Zappa et al., (2021) reported advantages in the 

surveillance of irrigation operations. The impact of 

vegetation cover, soil heterogeneity, and errors in 

calibration and validation are among the challenges. 

d. Advanced Models and Techniques 

i. Retrieving Irrigation Timing and Water 

Amounts 

Remarkable findings were obtained from the 

satellite soil moisture data in (Zappa et al., 2022). The 

creation of algorithms, validation against ground-based 

observations, and data assimilation techniques are among 

the challenges. 

ii. Unmanned Aerial Systems (UAS)-Based 

Remote Sensing  

Paridad et al., (2022) discussed the advantages 

of tracking soil moisture dynamics, recorded spatial 

variability in soil moisture, and improved irrigation 

techniques. Surface cover kinds, atmospheric conditions, 

and sensor limits are some of the challenges. 

e. Soil Moisture and Agricultural Practices 

i. Agricultural Expansion and Soil 

Management 

Abdelrahman, (2019) recognized potential for 

agricultural expansion. The issues of improving soil 

fertility and water use efficiency were emphasized. 

Advocated for the use of remote sensing and GIS tools to 

monitor soil moisture and irrigation. 

f. Calibration, Validation techniques and 

challenges  

i. Data Augmentation and Machine Learning  

Wang et al., (2023) exceeded the conventional 

methods. Several issues were addressed, such as the need 

for ongoing calibration and inconsistent data quality from 

remote sensing. 

ii. Vegetation Indices and Thermal-Based 

Techniques 

Kragh et al., (2023) assessed durability and 

validity. problems related to precise calibration, the 

impact of outside variables, and variations in vegetation 

cover and soil moisture have been identified. 

g. Challenges 

• The dependent quantities that affect estimated 

irrigation from satellite soil moisture data include 

the following. These are, among others, errors in 

precipitation data, noise associated with SM data, 

the effects arising from spurious signals in SM, and 

unknown portions of the pixel that are irrigation. 

(Jalilvand et al., 2019) 

• In previous studies, (Ma et al., 2022b) have 

explored challenges associated with the use of 

remote sensing data in agriculture, as well as 

fluctuations that might be linked to the type of 

ground and the cultivar. 

As stated in (Kragh et al., 2023) involves the effect of 

externalities which are; cloudiness, weather conditions, 

soil moisture, and vegetation cover. 

6. Conclusion 

Remote sensing has evolved as a key approach 

to monitoring, controlling, and optimizing irrigation 

practices for agricultural management critical constraint. 

enable practitioners to obtain valuable data for accurate 

irrigation scheduling. Satellite imagery and energy 

balance algorithms enable estimation in arid and semi-

arid regions where water rationing is a of 

evapotranspiration (ET) and soil moisture (SM), 

providing stakeholders with reliable data for irrigation 

scheduling. As depicted in the papers reviewed herein, 

remote sensing measurements appear to be important for 

soil moisture, vegetation water use estimates, and ET 

variability. While there is the provision of all-weather 

capability from SAR technology, the multispectral and 

optical sensors give excellent results for vegetation 

health. Integration of remote sensing data with models 

like Penman-Monteith and energy balance approaches 

has improved reference ET and actual ET estimates, 

enhancing precision irrigation. However, challenges 

remain are insignificant in comparison to these issues. 

Although data calibration and validation are crucial for 

accuracy and goals in remote sensing, these data are 

impacted by weather, crop type, and other environmental 

factors. This is because variables such as fluctuations in 

soil moisture content and vegetation cover present 

difficulties for the application of remote sensing 

technologies in quantifying irrigation needs. Further 

complicating matters are temporal resolution issues and 

the requirement to continuously recalibrate these 

machine learning models.  
 

Recommendations 
 

 Enhanced Calibration and Validation: To improve the 

reliability of remote sensing-derived evapotranspiration 

(ET) and soil moisture (SM) estimates, robust 

calibration and validation frameworks must be 

developed. This can be achieved by integrating multi-
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scale in-situ measurements, including eddy covariance 

flux towers for ET validation and distributed soil 

moisture sensor networks for SM verification, to ensure 

data accuracy and operational validity. 

 Enhanced Temporal Resolution: Remote sensing 

systems require higher temporal-frequency 

observations to accurately capture irrigation 

dynamics and crop physiological responses. This 

can be achieved by integrating multi-satellite data 

streams (e.g. Landsat, Sentinel-1/2 and MODIS) to 

enable near-real-time monitoring of soil moisture 

(SM) and evapotranspiration (ET) at field-relevant 

scales. 

 Development of Advanced Algorithms: Future 

studies should thus strive to advance the algorithms 

used in estimating soil moisture and ET. Advanced 

machine learning algorithms, along with data 

augmentation techniques, can also provide useful 

support in refining the given estimations. 

 Integration with Geographic Information 

Systems (GIS): Using Geographic Information Systems, 

remote sensing data can enhance the spatial analysis of 

irrigation and crop water needs. These integrated models 

will help to improve the decisions made about water and 

the long-term management of water systems. 

Enhanced Collaboration and Data Sharing: 

systematic use of remote sensing technologies in 

agriculture; It will require consultation between 

researchers, agriculturalists, and policymakers. This 

might also explain why data sharing in different remote 

regions and agricultural environments yields different 

results; this could help in solving some of the challenges 

that the system encounters and give a more reliable way 

of quantifying irrigation using remote sensing. Despite 

existing challenges, remote sensing remains a 

strategically vital tool for optimizing irrigation 

management and promoting sustainable agricultural 

water use. Continuous advancements in innovative 

methodologies and technologies are driving 

improvements in both crop productivity and water 

resource efficiency, particularly in semi-arid and arid 

regions globally. 
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