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EAL-TIME detection of plant infections by YOLOv5s is important in smart agriculture. 

Detecting ‎infections in maize poses significant challenges due to the field's complexity. 

Therefore, ‎YOLOv5s requires multiple training in this aspect. This study aims to explore these 

obstacles ‎through procedures for training YOLOv5s based on images from field surveying in the real 

field ‎and evaluate them. It investigated the wide range of infections in maize plants that occurred 

at ‎the same time, including insect infestations, diseases, and physiological symptoms. A dataset 

of ‎‎938 images was collected from 197 cases (14 infections). YOLOv5s curves were generated 

using ‎loss and accuracy functions, which rely on metrics such as precision (P), recall (R), 

mAP@0.5, ‎and mAP@0.5:0.95 to capture detailed model accuracy information. The curves indicate 

gradual ‎improvement in the model, albeit with some fluctuations attributed to data noise. This 

fluctuation ‎may be attributed to increased classifications within the dataset. The model shows good 

R ‎for most object classes, with values over 0.8, indicating accurate identification even for small 

or ‎difficult-to-see objects. However, it suffers from lower R rates, like corn stunts and 

phosphorus ‎deficiency, due to its difficulty distinguishing images. The model has strong 

mAP@0.5:0.95 ‎scores, suggesting its ability to generalize successfully across confidence levels. It 

works well for ‎most object classes, but its performance for corn stunts and phosphorus deficiency is 

lower due ‎to visual similarities. To enhance performance, there is a need for further refinement of 

the ‎detection system, possibly through additional training data or improved algorithms.‎  
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Introduction 

Plant diseases and the pathogens that cause them 

pose a direct threat to the global economy and ‎food 

security, as stated by Sibiya et al., (2019). This is 

identical to what you mentioned (Javidan ‎et al., 

2023) that plant diseases can cause a decrease in 

crop yield and quality. Visual crop ‎inspections by 

humans are time-consuming and can only be done 

in small areas. In addition, this ‎traditional method 

of diagnosing plant diseases is not always reliable 

and is limited by the ‎available expertise of the 

specialists (Ramcharan et al., 2019). Khakimov 

et al., (2022) found that ‎traditional visual 

inspection for plant diseases heavily relies on 

observer expertise and may not be ‎as accurate for 

early detection. An intelligent machine vision 

monitoring system can help farmers ‎with automatic 

inspection (Javidan et al., 2023). ‎ 

According to Baker et al., (2020), early diagnosis 

of plant diseases is crucial in preventing ‎epidemics 

and disease outbreaks. Detecting diseases early on 

enables swift action, such as ‎implementing 

quarantine measures or targeted treatments, to 

contain the spread of diseases and ‎prevent 

significant crop damage on a large scale.‎ 

Yadav et al., (2023) used handheld devices with 

cameras to capture plant images, which ‎depending 

on computer vision algorithms analyzed the images, 

in addition to identifying disease ‎symptoms and 

pathogens. Therefore, other researchers used 

machine learning and AI to ‎recognize disease 

patterns in plant images. With more data, the 

algorithms improved accuracy, ‎becoming valuable 

tools for automated diagnosis (Ahmed et al., 2022). 

As so, Aishwarya et al., ‎‎(2023) developed 

smartphone applications that allowed farmers to 

capture images of their plants. ‎Instant feedback on 

potential diseases or nutrient deficiencies was then 

provided, enhancing ‎accessibility to diagnostic 

information. In addition, another study conducted 

by Zhang et al., ‎‎ (2023) showed that mobile apps 

have great potential for farmers and agricultural 

experts. The ‎uploaded images of affected plants, 

which are then analyzed using AI algorithms to 

diagnose ‎potential diseases. A simple method 

relying on minimal image information is interesting 

for field ‎conditions (Javidan et al., 2023).  ‎ 

Timely diagnosis of plant infections remains a 

difficulty for farmers. It takes a lot of time and a ‎lot 

of human work to discover diseases, especially at 

an early stage. As a result, Dmitrijeva et 

al., ‎‎(2023) noted that even though neural networks 

usually do not solve the problem in general, 

they ‎have several advantages, for example, they 

assist us in classifying and grouping. But there 

are ‎also disadvantages, for example, training big 

neural networks takes much time, and multiple 

trials ‎and neural network tweaks must be 

undertaken to boost the accuracy. Buja et al., 

(2021) noted ‎one of the challenges of real-time 

monitoring was the conditions of the specifications 

of the ‎cameras of the smartphones common to 

farmers. Although almost all cameras now can take 

such ‎an image, the dataset contains images with 

different resolutions, lighting, and with 

different ‎background noises, which will need to 

improve the recognition of diseases by neural 

networks. ‎and Niu et al., (2023) added that making 

it challenging to achieve accurate real-time 

detection. ‎Fruit detection algorithms employing 

deep learning outperform traditional image 

recognition ‎methods in terms of speed and 

accuracy, rendering them the predominant approach 

in practice. ‎YOLOv5 stands out among single-stage 

detection models due to its superior detection 

accuracy ‎and rapid detection speed ‎ 

YOLOv5 (2020) can categorize the image into a 

category and detect several items within a ‎image. It 

is one of the fastest methods that employ CNN for 

object detection and combines ‎bounding box 

prediction and object classification into a single 

end-to-end differentiable network ‎‎ (Zhu et al., 

2021). The greatest feature of YOLOv5 is that it 

features Focus and cross-stage ‎partial connections 

(CSP) (Wang et al., 2020) layer. After comparing 

to the rest in ‎Jason et al., (2022) discovered that 

the YOLOv5 variations provided the optimum 

balance between both ‎speed and accuracy while 

boasting a much higher accuracy-to-speed ratio. 

Zhang et al., (2024) ‎used the YOLOv5s model to 

build visual detection of tomato bunches from full 

images, which is ‎a detection task and the recorded 

dataset. In the other study depending on the 

YOLOv5s, the ‎results of an experiment 

demonstrate the effectiveness of the grape detection 

model in ‎identifying grapes. The model showed 

high detection accuracy (Wang et al., 2024).‎ 

Plant detection in unstructured orchard 

environments remains challenging due to 

varying ‎illumination conditions and degrees of 

occlusion. According to Tang et al., (2023) and 

added ‎that despite advancements in object detection 

technology, detecting fruit with high 

precision ‎remains challenging. To our knowledge, 

this is the first time that the problems of training 

several ‎forms of maize infection detection have 

been investigated simultaneously to acquire 

evaluation ‎under field settings 

Using YOLOv5s improves the speed and accuracy 

of object detection, but it requires extensive ‎training 

to address the challenges in the field and meet our 

requirements effectively. Some of ‎these challenges 

arise when employing YOLOv5s for real-time 

detection of various plant ‎infections at the same 

time in the same field. This study aims to explore 

these obstacles through ‎procedures for training 

YOLOv5s based on images from field surveying to 

provide concrete ‎examples to support deployment 

on smartphones for real-time detection and 

identification. This ‎study investigated the wide 
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range of infections in maize plants that occurred at 

the same time in ‎the field, including insect 

infestations, disease outbreaks, and physiological 

symptoms that field ‎images captured in different 

ways.‎ 

 

 
Materials and Methods:

Area Study and plants ‎ 

The survey was conducted in four Maize fields in Sohag 

Gov. in the summer of 2023, as ‎illustrated in the 

following map and each location is represented by a red 

dot, as depicted in Fig. ‎‎1

. 

 
Fig. 1. Map of Area Study 

 

Experimental procedure 

The study was done in five steps, as in Fig. 2. 

Maize as a summer crop to detect insect and plant 

diseases and physiological symptoms in the actual 

field, covering four different regions in Upper 

Egypt fields in this region known for its high 

temperature. Plant infection detection was done by 

experts, and images were recorded and numbered 

through the time of pick-up. 

 
Fig. 2. Experimental procedure stepsInjury identification by the expert ‎ 

 

Researchers found 157 maize infection cases in the 

field which were Distributed. And 14 plant 

infection types (9 Insect pests, 3 plant diseases, and 

2 Physiological ‎symptoms) for each condition 

(‎Table 1). 

 

Capture images ‎ 

Capture images by the camera of the smartphone 

(Samsung A21s) was used with a resolution of ‎‎48 

megapixels and an F/2.0 aperture. The images were 

captured in varying lighting 

conditions. ‎Documenting the condition of the 

affected plant by employing a multi-angle 

photography ‎strategy, including top-down, 

horizontal, vertical, and lateral angles as shown in 

Fig. 3.‎ 

Multiple images have been taken at variation 

intervals throughout the day to enhance 

the ‎diagnostic accuracy of detention. These images, 

taken at different times during the day, reflect ‎the 

plant's dynamic response to environmental factors 

throughout the day. Images in Fig 4 show ‎one 

example image for every case.‎ 

 

 

Dataset sort and classify 

Images taken have been sorted to exclude unclear 

and highly noisy images and to classify them by 

infection. The dataset consists of 197 cases (938 

images). The images were classified into main 

folder maize (Maiz-YOLO) and subfolders for each 

case of infection and other sub-for each disease, 

symptom, or insect to facilitate the process of 

training the model on them, for a better training 

result. Data have been loaded and prepared as with 

any deep learning task, the first and most important 

one is to prepare the dataset. Dataset runs any deep 

learning model. The dataset for our experiment 

contains about 938 images of maize for 14 plant 

infections. 

 

Training  

YOLOv5s (small) v7.0 was the model used for 

training. It is a good option when real-time 

detection is required, as it balances accuracy and 

speed (Quick to train). YOLOv5s can forecast 

category labels to help make better decisions 

without sacrificing too much accuracy and real-time 

control on a smartphone screen because of its fast 

inference speed. Table 2 is showed the 

Identification of injury 
in the field by the expert ‎

Capture images from 
different angles‎‎

Sort and Classify of 
Dataset ‎

Conducting training‎‎‎ Training Evaluation‎
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specifications of this model. The network structure 

of initial YOLOv5s is shown in Fig. 5. 

The YOLOv5 network comprises four parts: input, 

backbone, neck, and detecting head. But in ‎this 

study depending on the YOLOv5s v7.0 that 

emerges the neck layer with the head 

becomes ‎speedy. The detection head performs 

convolution on three different sizes of feature 

maps ‎outputted for target category and location 

regression detection as Fig. 9

 

 

TABLE 1. Numbers of cases and images of every Maize infection 

 

 

 
Fig. 3. Angle of captured images 

 

 

 
Fig 4. Images of Insect pests, plant diseases, and physiological symptoms  

 

 Infection type Scientific Name Infections Name Cases No. Images No. 

1 

Insect pests 

 

Spodoptera frugiperda Armyworm 12 70 

2 Epicauta spp. Blister Beetle 7 62 

3 Phyllophaga spp. June Beetle 3 27 

4 Syrphidae spp. Syrphidae 4 35 

5 Helicoverpa zea Corn earworm 2 7 

6 Tetranychus urticae Tetranychus Urticae 3 26 

7 Tuta absoluta Tuta Absoluta 39 231 

8 Bemisia tabaci Whitefly 37 238 

9 Agriotes spp. Wireworm 2 9 

10 

plant diseases 

Spiroplasma kunkelii Corn stunt 3 19 

11 Exserohilum turcicum Leaf Blight 9 40 

12 Fusarium moniliforme Sorghum Cob Mold 2 17 

13 
Physiological symptoms 

Nitrogen Deficiency Nitrogen Deficiency 28 142 

14 Phosphorus Deficiency Phosphorus Deficiency 6 15 

Total 157 938 
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TABLE 2. The specifications of this YOLOv5s v7.0. 

 

  
Fig. 5 The network structure of initial YOLOv5s  

 

Dataset was used to train the YOLOv5s neural 

network. Bounding Box was used as the annotation 

type, and main folders and subfolders to facilitate 

the process of training the model on them, for a 

better training result, the augmented version was 

increased three times. Once the version was 

generated, it was exported to YOLOv5 PyTorch 

format for further use in neural network training. 

Results and their evaluation of the images were 

uploaded in one folder to be automatically split into 

three folders later using the Roboflow tool.  

The next stage was to train the YOLOv5 neural 

network model utilizing the Google Colab 

environment, applying GPU (Graphics Processing 

Unit) computing. Kernel YOLOv5s was utilized 

during training. To train the YOLOv5 neural 

network, the following procedures were performed: 

installed YOLOv5s packages (dependencies), 

imported dataset, defined model setup, and trained 

YOLOv5. 

 

Performance Evaluation Methods 

In this study depending on the YOLOv5s curves 

during training and the assessment indicators to 

evaluate the training the different detection of plant 

infections. YOLOv5s curves during training, Box 

represents the mean of GIoU Loss, Objectness 

represents the mean of object detection loss, 

Classification represents the mean of classification 

loss, validation (val) Box represents the mean of 

GIoU loss in the validation set, val objectness 

represents the mean of object detection loss in the 

validation set, val Classification represents the 

mean of classification loss in the validation set 

The assessment indicators chosen for this study are 

frames per second (FPS), floating-point operations 

(FLOPs), average precision (AP), and mean 

average precision (mAP). The AP, or mAP, is a 

metric used to assess the overall accuracy of object 

detection. The best metrics to gauge the model's the 

detection accuracy for object detection are AP and 

mAP. FLOPs are a metric used to quantify the 

computational effort and model complexity. FPS is 

a measure of object identification speed that shows 

how many images the network can identify in a 

second. The following Eq. (1) – (4) demonstrate the 

formula:  

         ( )  
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      ( )  
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(  )     (3) 

    
 

 
∑   
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Among these, Precision shows how accurate the 

model is in every box that is discovered. Recall (R) 

Model 
Size 

(pixels) 

Mapbox 

50-95 

mAP

mask 

50-95 

Train time 300 

epochs A100 

(hours) 

Speed 

ONNX 

CPU 

(ms) 

Speed 

TRT 

A100 

(ms) 

Para

ms 

(M) 

FLOPs 

@640 

(B) 

YOLOv5

s-seg 

640 37.6 31.7 88:16 173.3 1.4 7.6 26.4 
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is the detection frame's coverage of all ground facts 

that the model predicts. AP takes into account the P 

and R indicators while assessing the model's 

performance in each area. The area between the 

coordinate axis and the P-R curve is the value of 

AP. False positive (FP) is the number of negative 

cases categorized as positive categories; true 

positive (TP) is the number of properly predicted 

positive instances; and false negative (FN) is the 

number of mistakenly classified positive examples. 

The accuracy of the ith pest category is represented 

by C, which is the number of pest species. The 

recall rate of the ith pest category is represented by 

Ri. 

 

Results and Discussion: 

Identify Metrics, Training, and Validation: 

Based on the dataset, Fig. 6 shows different line 

charts, which are typically used to track changes. 

Since each chart likely represents a different metric 

or‎ aspect‎ of‎ a‎ machine‎ learning‎ model’s‎

performance. The Maize-YOLO curves indicate the 

performance of the model in terms of 

train/box_loss, ‎train/obj_loss, train/cls_loss, and 

val/cls_loss. Lower values of these metrics suggest 

that the ‎model is confident and improving as it is 

trained, which is similar to (Yang et al., 2023). But 

the ‎val/box_loss curve is not perfectly smooth, 

which indicates that there is some noise in the 

data. ‎On the other hand, the val/obj_loss curve 

shows an inverse trend, which suggests that there 

is ‎more noise in the validation data than in the 

training data that different with (Yang et al., 2023). 

Maybe ‎they‎ used‎ insect‎ pests’‎ images‎ only,‎ but‎

images were used in this study for three types 

of ‎infections. ‎This means that the model has 

successfully learned from the training data, but is 

struggling to perform on the validation data. In 

addition, the Maize-YOLO curves show the 

common metrics used to evaluate the model, such 

as precision, recall, accuracy, F1 score, and mAP. 

These metrics indicate that the model is improving 

as it is trained, but the curves are not perfectly 

smooth, which suggests that there is some 

variability in the data. This could be due to factors 

such as an insufficient amount of training data, lack 

of diversity in the data, or the model being too 

complex. Overall, the curves suggest that the model 

is improving, but there is still room for 

improvement. By addressing the sources of noise 

and variability in the data, the model can be further 

optimized to achieve better performance. 

 

 
Fig. 6. Maiz-YOLO curves during training 

 

Recall 

The recall-confidence Relationship curves in Fig. 7 

show the performance of an object detection model 

on a dataset of imagery. The curves are plotted for 

each object class in the dataset, with the recall on 

the y-axis and the confidence threshold on the x-

axis. this chart has been presented as a helpful tool 

for analyzing the effectiveness of a classification 

model in detecting different plant illnesses and 

weaknesses in the detection by YOLOv5s. ‎ 

The curves show that the model has high recall for 

most object classes, with values greater than 0.8. 

This means that the model can correctly identify 

most of the objects in the images, even when the 

objects are small or difficult to see. However, the 

curves also show that the model has a lower recall 

for some object classes, such as corn stunt and 

phosphorus deficiency. This is likely because these 

object classes are more difficult to distinguish from 

other objects in the images.‎ A line that stays high 

on the graph as confidence grows suggests a class 

that the model recognizes with high accuracy, even 

at tighter confidence levels. This threshold is 

critical for precision agriculture, where the cost of 

false positives (e.g., wasteful pesticide treatment) 

and false negatives (e.g., missing infestations) may 

be high, according to Wyawahare et al., (2023). 

This chart is crucial in fine-tuning the model to 

ensure it operates effectively for the unique 

demands of precision agriculture, enabling it to 

make‎ educated‎ choices‎ based‎ on‎ the‎ model’s‎

predictions..
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Fig. 7. Recall and confidence curve for Maize infection types 

  

 

Precision (P), recall (R), mean Average 

Precision, and images No. 

The results in Fig. 8 show that the model is capable 

of detecting objects in imagery with high ‎accuracy. 

The effects of armyworm, Syrphidae, Tetranychus 

urticae, and Tuta ‎absoluta show ‎perfect scores (1.0) 

for both P and R, indicating that the system 

accurately identified these types ‎without missing 

any occurrences or making false identifications. 

The mAP at both thresholds (0.5 ‎and 0.5:0.95) is 

also high for these plant infections, suggesting that 

the system is reliable across ‎different levels of 

detection difficulty.‎ However, some categories 

require further work, such as ‎corn stunt and 

phosphorus deficiency (<50%), nitrogen deficiency, 

and leaf blight (<75 %). In ‎the same trend, the 

model performs well, achieving high P and R for 

most object classes. ‎However, some classes require 

further work, such as corn stunt and phosphorus 

deficiency. While ‎mAP@0.5:0.95 scores indicate 

that the model's performance for corn stunt and 

phosphorus ‎deficiency is lower than for other 

classes, this is likely because these two classes are 

visually ‎similar to other objects in the images.‎ 

Compared to Yang et al., (2023), these values were 

the best, with Yang et al. focusing on the ‎insect 

pests only, but according to Tang et al., (2023) 

under conditions in actual fields with ‎different 

types of plant infection, that high precision remains 

challenging. As corn stunt and ‎phosphorus 

deficiency in this study 

Room for Improvement: The corn stunt and 

phosphorus deficiency have the lowest scores 

across ‎all metrics, which could indicate that the 

system struggles to detect these particular 

plant ‎infections accurately. This might be due to the 

visual similarity of these plant infections with ‎other 

benign conditions, or a lack of representative 

training data

.‎

 
Fig. 8. Detection performance of Maize -YOLO on datasets for various types of plant infections 
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Fig. 9 Example of Maize-YOLO results for pest detection. 

 

Conclusion  

Using the Roboflow tool and the Google Colab 

environment, the YOLOv5s neural 

network ‎recognizes plant infection species from 

images. Dataset capture from the survey of the field 

for ‎‎14 plant infections, consisting ‎about of 938 

images, was used for training. After training, 

we ‎received YOLOv5s curves with loss and 

accuracy functions, and P, R, mAP@0.5, 

and ‎mAP@0.5:0.95. This value helps to record 

details of the accuracy of the model. ‎ 

The Maize-YOLO curves indicate the model's 

performance in terms of various metrics. 

Lower ‎values suggest the model is improving and 

confident, but not all curves are perfectly 

smooth, ‎indicating noise in the data. The common 

metrics show improvement as the model is trained, 

but ‎there is variability, which can be due to 

insufficient training data, or model complexity. 

Overall, ‎there is room for improvement by 

addressing noise and variability in the data. ‎The 

curves display ‎the model's performance in detecting 

various plant illnesses and weaknesses. The model 

has high ‎recall for most object classes, but lower 

recall for some, such as corn stunt and 

phosphorus ‎deficiency.‎ 

Most plant infections have high P and R, which is 

promising. However, the lower scores for 

some ‎plant infections highlight the need for further 

refinement of the detection system, 

possibly ‎through additional training data or 

improved algorithms. ‎ 

To detect these plant infections, adjusting model 

complexity can be done, by 

implementing ‎techniques like dropout or L1/L2 

regularization to prevent overfitting, and optimize 

batch sizes ‎for corn stunt and phosphorus 

deficiency. This analysis and evaluation can help in 

understanding ‎the strengths and weaknesses of the 

detection system under field-survey conditions that 

are ‎captured randomly, that need guiding further 

improvements, and ensuring effective pest 

and ‎deficiency management.‎ Therefore, there is a 

need for further refinement of the detection system, 

possibly through ‎additional training data or 

improved algorithms.‎ 
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 تحت ظزوف المسح الحقلي لاكتشاف إصابات نبات الذرة في الوقت الفعلي YOLOv5s تدريب
السيد على السيد على

1
، أحمد جمال ابواليسز

2،
حسن طزبيه 

2
 

1
 اىضساعٞخ، ٍشمض اىجذ٘س اىضساعٞخ، اىذقٜ، اىجٞضح، ٍصش ٍعٖذ ثذ٘س اىْٖذسخ 
5

 ، ميٞخ اىضساعخ، جبٍعخ أس٘اُ، ٍصشقسٌ اىْٖذسخ اىضساعٞخ 

 
ب فٜ اىضساعخ اىزمٞخ ، ٝشنو  YOLOv5sٝعذ اىنشف فٜ اى٘قذ اىفعيٜ عِ الإصبثبد اىْجبرٞخ ث٘اسطخ  اَ ٍجبلًا ٍٖ

 فٜ ٕزارذسٝجاب ٍزعذدا  YOLOv5sاىذقو، ىزىل، ٝزطيت  طجٞعخامزشبف دبلًد اىعذٗٙ فٜ اىزسح رذذٝبد مجٞشح ثسجت 

ثْبءا عيٚ ص٘س جَعذ  YOLOv5s، رٖذف ٕزٓ اىذساسخ إىٚ اسزنشبف ٕزٓ اىع٘ائق ٍِ خلاه إجشاء رذسٝت  اىجبّت

ٍِ اىَسخ اىَٞذاّٜ فٜ اىذقو ٗرقَٖٞٞب ، ٗقذ ثذثذ فٜ ٍجَ٘عخ ٗاسعخ ٍِ دبلًد اىعذٗٙ فٜ ّجبربد اىزسح ٗاىزٜ دذثذ 

 555ٗرٌ جَع اىجٞبّبد ٍِ ٗالأعشاض اىفسٞ٘ى٘جٞخ ،  فٜ ّفس اى٘قذ، ثَب فٜ رىل الإصبثخ ثبىذششاد، ٗالأٍشاض،

ثبسزخذاً ٗظبئف اىفقذ ٗاىذقخ، ٗاىزٜ رعزَذ عيٚ  YOLOv5sإصبثخ( ، رٌ إّشبء ٍْذْٞبد  15دبىخ ) 151ص٘سح ىـ 

لًىزقبط ٍعيٍ٘بد رفصٞيٞخ عِ دقخ  mAP@0.5ٗ ،mAP@0.5:0.95(، Rٗ(، ٗالًسزذعبء )Pٍقبٝٞس ٍثو اىذقخ )

اىَْذْٞبد إىٚ رذسِ رذسٝجٜ فٜ اىَْ٘رج، ٗإُ مبُ رىل ٍع ثعط اىزقيجبد اىزٜ رعضٙ إىٚ رش٘ٝش  اىَْ٘رج ، ٗرشٞش

اىجٞبّبد ، قذ ٝعضٙ ٕزا اىززثزة إىٚ صٝبدح اىزصْٞفبد ظَِ ٍجَ٘عخ اىجٞبّبد ، ٝظُٖش اىَْ٘رج قَٞخ الًسزذعبء جٞذح 

زٚ ىلأشٞبء اىصغٞشح أٗ اىزٜ ٝصعت سؤٝزٖب ، إلً أّٖب ، ٍَب ٝشٞش إىٚ اىزذذٝذ اىذقٞق د6.5ىَعظٌ اىفئبد ، ثقٌٞ رضٝذ عِ 

رعبّٜ ٍِ اّخفبض الًسزذعبء فٜ دبىزٜ رقضً اىزسح ّٗقص اىف٘سف٘س، ٗرىل ثسجت صع٘ثخ رَٞٞض اىص٘س ، ٗٝذز٘ٛ 

ق٘ٝخ، ٍَب ٝشٞش إىٚ قذسرٔ عيٚ اىزعٌَٞ ثْجبح عجش ٍسز٘ٝبد اىثقخ ، ٗمزىل  mAP@0.5:0.95اىَْ٘رج عيٚ دسجبد 

و جٞذ ٍع ٍعظٌ فئبد اىنبئْبد، ٗىنِ أداءٓ ٍع رقضً اىزسح ّٗقص اىف٘سف٘س أقو ثسجت اىزشبثٔ اىجصشٛ ، ٝعَو ثشن

ىزعضٝض الأداء ْٕبك دبجخ ىَضٝذ ٍِ اىزذسِٞ ىْظبً اىنشف، سثَب ٍِ خلاه ثٞبّبد اىزذسٝت الإظبفٞخ أٗ اىخ٘اسصٍٞبد 

 اىَذسْخ.


